Obtaining Spectra of Turbulent Velocity from Observations

We discuss a long-standing problem of how turbulence can be studied using observations of Doppler broadened emission and absorption lines. The focus of the present review is on two new techniques, the Velocity–Channel Analysis (VCA), which makes use of the channel maps, and the Velocity Coordinate Spectrum (VCS), which utilizes the fluctuations measured along the velocity axis of the Position–Position Velocity (PPV) data cubes. Both techniques have solid theoretical foundations based on analytical calculations as well as on numerical testings. Among the two the VCS, which has been developed quite recently, has two unique features. First of all, it is applicable to turbulent volumes that are not spatially resolved. Second, it can be used with absorption lines that do not provide good spatial sampling of different lags over the image of the turbulent object. In fact, recent studies show that measurements of absorption line along less than 10 absorption directions are sufficient for a reliable recovering of the underlying spectrum of the turbulence. Moreover, both weak absorption lines and absorption lines in saturated regime can be used, which extends the applicability of the technique. Our comparison of the VCA and the VCS with a more traditional technique of Velocity Centroids shows that the former two techniques recover reliably the spectra of supersonic turbulence, while the Velocity Centroids may be used only for studying subsonic turbulence. We discuss spectra of astrophysical turbulence obtained with the VCA and the VCS techniques.

[1]  G. Münch Internal Motions in the Orion Nebula , 1958 .

[2]  J. Ostriker,et al.  A theory of the interstellar medium - Three components regulated by supernova explosions in an inhomogeneous substrate , 1977 .

[3]  J. Crovisier,et al.  The spatial power spectrum of galactic neutral hydrogen from observations of the 21-cm emission line , 1983 .

[4]  R. Narayan,et al.  Slow pulsar scintillation and the spectrum of interstellar electron density fluctuations , 1985 .

[5]  S. C. Kleiner,et al.  Large-scale structure of the Taurus molecular complex. III: Methods for turbulence , 1985 .

[6]  C. O’Dell,et al.  Evidence for turbulence in H II regions , 1987 .

[7]  B. Shustov Protostars and Planets II , 1987 .

[8]  J. Stutzki,et al.  High spatial resolution isotopic CO and CS observations of M17 SW - The clumpy structure of the molecular cloud core , 1989 .

[9]  Changbom Park,et al.  Topology of microwave background fluctuations - Theory , 1990 .

[10]  R. Henriksen,et al.  A first use of wavelet analysis for molecular clouds , 1990 .

[11]  L. Stenholm Molecular cloud fluctuations. II, Methods of analysis of cloud maps , 1990 .

[12]  C. Gwinn,et al.  Evidence for an inner scale to the density turbulence in the interstellar medium , 1990 .

[13]  D. A. Green,et al.  A power spectrum analysis of the angular scale of Galactic neutral hydrogen emission towards l=140°, b=0° , 1993 .

[14]  Dubrulle,et al.  Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. , 1994, Physical review letters.

[15]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[16]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[17]  Leo Blitz,et al.  DETERMINING STRUCTURE IN MOLECULAR CLOUDS , 1994 .

[18]  E. Falgarone,et al.  The intermittency of turbulence in interstellar clouds: implications for the gas kinetic temperature and decoupling of heavy particles from the gas motions. , 1995 .

[19]  John W. Armstrong,et al.  Electron Density Power Spectrum in the Local Interstellar Medium , 1995 .

[20]  R. Scoccimarro Cosmological Perturbations: Entering the Nonlinear Regime , 1996, astro-ph/9612207.

[21]  Velocity field statistics in star-forming regions. I. Centroid velocity observations , 1998, astro-ph/9810427.

[22]  Telemachos Ch. Mouschovias,et al.  in The Origin of Stars and Planetary Systems , 1999 .

[23]  Charles J. Lada,et al.  The Origin of Stars and Planetary Systems , 1999 .

[24]  L. Cambresy Mapping of the extinction in Giant Molecular Clouds using optical star counts , 1999, astro-ph/9903149.

[25]  The Dynamical Structure and Evolution of Giant Molecular Clouds , 1999, astro-ph/9901370.

[26]  R. Sault,et al.  The large‐scale HI structure of the Small Magellanic Cloud , 1999 .

[27]  Alyssa A. Goodman,et al.  The Spectral Correlation Function: A New Tool for Analyzing Spectral Line Maps , 1999, astro-ph/9903454.

[28]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[29]  W. Goss,et al.  Power Spectrum of the Density of Cold Atomic Gas in the Galaxy toward Cassiopeia A and Cygnus A , 2000, astro-ph/0007366.

[30]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[31]  R. Scoccimarro The Bispectrum: From Theory to Observations , 2000, astro-ph/0004086.

[32]  E. Vishniac,et al.  The Anisotropy of MHD Alfv\'{e}nic Turbulence , 2000, astro-ph/0003403.

[33]  A. Lazarian,et al.  Velocity Modification of H I Power Spectrum , 1999, astro-ph/9901241.

[34]  E. Vishniac,et al.  The Anisotropy of Magnetohydrodynamic Alfvénic Turbulence , 2000 .

[35]  A. Lazarian,et al.  Emissivity Statistics in Turbulent Compressible Magnetohydrodynamic Flows and the Density-Velocity Correlation , 2001, astro-ph/0102380.

[36]  A. Lazarian,et al.  Simulations of Magnetohydrodynamic Turbulence in a Strongly Magnetized Medium , 2001, astro-ph/0105235.

[37]  S. Lazarian Velocity and density spectra of the small magellanic cloud , 2001, astro-ph/0102191.

[38]  A. Goodman,et al.  The Effects of Noise and Sampling on the Spectral Correlation Function , 2000, astro-ph/0010344.

[39]  J. Dickey,et al.  Southern Galactic Plane Survey Measurements of the Spatial Power Spectrum of Interstellar H I in the Inner Galaxy , 2001, astro-ph/0107604.

[40]  Peter Goldreich,et al.  Simulations of Incompressible Magnetohydrodynamic Turbulence , 2001 .

[41]  A. Lazarian,et al.  Magnetohydrodynamic Turbulence as a Foreground for Cosmic Microwave Background Studies , 2002 .

[42]  A. Newell,et al.  Anisotropic turbulence of shear-Alfven waves , 2002 .

[43]  A. Lazarian,et al.  New Regime of Magnetohydrodynamic Turbulence: Cascade below the Viscous Cutoff , 2001, astro-ph/0112195.

[44]  A. Lazarian,et al.  Compressible Magnetohydrodynamic Turbulence : mode coupling , scaling relations , anisotropy , viscosity-damped regime , and astrophysical implications , 2003 .

[45]  Velocity statistics from spectral line data: effects of density–velocity correlations, magnetic field and shear , 2002, astro-ph/0210159.

[46]  A. Lazarian,et al.  Statistics of Velocity from Spectral Data: Modified Velocity Centroids , 2003, astro-ph/0304007.

[47]  M. Juvela,et al.  The Spectral Correlation Function of Molecular Clouds: A Statistical Test for Theoretical Models , 2002, astro-ph/0211135.

[48]  Eve C. Ostriker,et al.  Spectral Properties of Compressible Magnetohydrodynamic Turbulence from Numerical Simulations , 2003, astro-ph/0303103.

[49]  On the Use of Fractional Brownian Motion Simulations to Determine the Three-dimensional Statistical Properties of Interstellar Gas , 2003, astro-ph/0304539.

[50]  A. Lazarian,et al.  Ordinary and Viscosity-damped Magnetohydrodynamic Turbulence , 2003, astro-ph/0305212.

[51]  C. Brunt,et al.  Intrinsic, Observed, and Retrieved Properties of Interstellar Turbulence , 2003 .

[52]  On the detectability of turbulence and bulk flows in X-ray clusters , 2003, astro-ph/0310041.

[53]  A. Lazarian Turbulence Statistics from Spectral Line Observations , 2004, astro-ph/0505576.

[54]  C. Heiles,et al.  The Millennium Arecibo 21 Centimeter Absorption-Line Survey. III. Techniques for Spectral Polarization and Results for Stokes V , 2004 .

[55]  Anthony Allen,et al.  Does Magnetic Levitation or Suspension Define the Masses of Forming Stars , 2004 .

[56]  Velocity centroids and the structure of interstellar turbulence. I. Analytical study , 2004, astro-ph/0404244.

[57]  A. Lazarian,et al.  Velocity modification of the power spectrum from an absorbing medium , 2004, astro-ph/0405461.

[58]  A. Lazarian,et al.  Magnetic Field Structure and Stochastic Reconnection in a Partially Ionized Gas , 2003, physics/0311051.

[59]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[60]  Velocity centroids as tracers of the turbulent velocity statistics , 2004, astro-ph/0401603.

[61]  A. Lazarian,et al.  STUDYING TURBULENCE USING DOPPLER-BROADENED LINES: VELOCITY COORDINATE SPECTRUM , 2005, astro-ph/0511248.

[62]  K. Rice,et al.  Protostars and Planets V , 2005 .

[63]  A. Lazarian,et al.  Density Scaling and Anisotropy in Supersonic Magnetohydrodynamic Turbulence , 2005, astro-ph/0502547.

[64]  A. Lazarian,et al.  Polarization Intermittency and Its Influence on MHD Turbulence , 2005, astro-ph/0512315.

[65]  Donald P. Cox,et al.  THE THREE-PHASE INTERSTELLAR MEDIUM REVISITED , 2005 .

[66]  A. Lazarian Turbulence Spectra from Doppler‐shifted Spectral Lines , 2006, astro-ph/0610765.

[67]  周辉 北京大学濮祖荫教授被推选为国际著名期刊Journal of Geophysical Research——Space Physics的主编 , 2006 .

[68]  M. Juvela,et al.  The Power Spectrum of Supersonic Turbulence in Perseus , 2006, astro-ph/0611248.

[69]  Fahima Nekka,et al.  Morphological Analysis of H I Features. II. Wavelet-based Multifractal Formalism , 2006 .

[70]  A. Begum,et al.  Power spectrum of HI intensity fluctuations in DDO 210 , 2006, astro-ph/0607367.

[71]  Interstellar cloud structure: the statistics of centroid velocities , 2006, astro-ph/0602265.

[72]  F. Bensch,et al.  A KOSMA 7 deg$\mathsf{^{2}}$ $\mathsf{^{13}}$CO 2–1 and $\mathsf{^{12}}$CO 3–2 survey of the Perseus cloud - I. Structure analysis , 2006 .

[73]  A. Lazarian,et al.  Cosmic Ray Scattering in Compressible Turbulence , 2006, astro-ph/0606737.

[74]  Stanislav Boldyrev Spectrum of magnetohydrodynamic turbulence. , 2006, Physical review letters.

[75]  A. Lazarian,et al.  Strong Imbalanced Turbulence , 2007, 0709.0554.

[76]  M. Norman,et al.  The Statistics of Supersonic Isothermal Turbulence , 2007, 0704.3851.

[77]  P. Goldreich,et al.  Imbalanced Strong MHD Turbulence , 2006, astro-ph/0607243.

[78]  W. Welch,et al.  A Case Study of Low-Mass Star Formation , 2007, 0706.2206.

[79]  G. Kowal,et al.  Density Fluctuations in MHD Turbulence: Spectra, Intermittency, and Topology , 2006, astro-ph/0608051.

[80]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[81]  K. Keil,et al.  Protostars and Planets V , 2007 .

[82]  Volker Ossenkopf,et al.  Statistics of velocity centroids: effects of density–velocity correlations and non‐Gaussianity , 2007 .

[83]  Changbom Park,et al.  Topology of H I Gas Distribution in the Large Magellanic Cloud , 2007, 0704.2820.

[84]  B. Chandran Strong Anisotropic MHD Turbulence with Cross Helicity , 2008, 0801.4903.

[85]  S. Galtier Exact scaling laws for 3D electron MHD turbulence , 2008 .

[86]  D. Pogosyan,et al.  Studying Velocity Turbulence from Doppler-broadened Absorption Lines: Statistics of Optical Depth Fluctuations , 2008, 0801.1151.

[87]  E. Ostriker,et al.  Magnetically Aligned Velocity Anisotropy in the Taurus Molecular Cloud , 2008, 0802.2084.

[88]  Andrzej Pigulski,et al.  β Cephei stars in the ASAS-3 data. II. 103 new β Cephei stars and a discussion of low-frequency modes , 2007, 0711.2530.

[89]  J. Brown,et al.  The Outer Scale of Turbulence in the Magnetoionized Galactic Interstellar Medium , 2008, 0802.2740.