Advanced Composite Solid Electrolytes for Lithium Batteries: Filler Dimensional Design and Ion Path Optimization.

Composite solid electrolytes are considered to be the crucial components of all-solid-state lithium batteries, which are viewed as the next-generation energy storage devices for high energy density and long working life. Numerous studies have shown that fillers in composite solid electrolytes can effectively improve the ion-transport behavior, the essence of which lies in the optimization of the ion-transport path in the electrolyte. The performance is closely related to the structure of the fillers and the interaction between fillers and other electrolyte components including polymer matrices and lithium salts. In this review, the dimensional design of fillers in advanced composite solid electrolytes involving 0D-2D nanofillers, and 3D continuous frameworks are focused on. The ion-transport mechanism and the interaction between fillers and other electrolyte components are highlighted. In addition, sandwich-structured composite solid electrolytes with fillers are also discussed. Strategies for the design of composite solid electrolytes with high room temperature ionic conductivity are summarized, aiming to assist target-oriented research for high-performance composite solid electrolytes.

[1]  Wengao Zhao,et al.  A Polymerized‐Ionic‐Liquid‐Based Polymer Electrolyte with High Oxidative Stability for 4 and 5 V Class Solid‐State Lithium Metal Batteries , 2022, Advanced Energy Materials.

[2]  Huolin L. Xin,et al.  Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries , 2022, Nature Nanotechnology.

[3]  Kyung‐Won Park,et al.  High-performance free-standing hybrid solid electrolyte membrane combined with Li6.28Al0.24La3Zr2O12 and hexagonal-BN for all-solid-state lithium-based batteries , 2022, Chemical Engineering Journal.

[4]  Jiayan Luo,et al.  Vertically Heterostructured Solid Electrolytes for Lithium Metal Batteries , 2022, Advanced Functional Materials.

[5]  Yuhan Li,et al.  Boosting the Ion Mobility in Solid Polymer Electrolytes Using Hollow Polymer Nanospheres as an Additive. , 2022, ACS applied materials & interfaces.

[6]  Wenping Sun,et al.  Ion Hopping: Design Principles for Strategies to Improve Ionic Conductivity for Inorganic Solid Electrolytes. , 2022, Small.

[7]  Guangmin Zhou,et al.  Formulating energy density for designing practical lithium–sulfur batteries , 2022, Nature Energy.

[8]  Jie Kong,et al.  Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption , 2022, Nature Communications.

[9]  Xiongwei Qu,et al.  A Squaraine-Linked Zwitterionic Covalent Organic Framework Nanosheets Enhanced Poly(ethylene oxide) Composite Polymer Electrolyte for Quasi-Solid-State Li–S Batteries , 2022, ACS Applied Energy Materials.

[10]  Yang Xia,et al.  Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0.33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery , 2022, Rare Metals.

[11]  Xingyi Huang,et al.  Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries , 2022, Journal of Energy Chemistry.

[12]  Youlong Xu,et al.  Porous membrane host-derived in-situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries , 2022, Chemical Engineering Journal.

[13]  Erqing Zhao,et al.  Nanostructured zeolitic imidazolate framework-67 reinforced poly(ethylene oxide) composite electrolytes for all solid state Lithium ion batteries , 2022, Applied Surface Science.

[14]  L. Ci,et al.  Sheet-like garnet structure design for upgrading PEO-based electrolyte , 2022, Chemical Engineering Journal.

[15]  H. Deng,et al.  “Toolbox” for the Processing of Functional Polymer Composites , 2021, Nano-Micro Letters.

[16]  Soojin Park,et al.  Breathable Artificial Interphase for Dendrite-Free and Chemo-Resistive Lithium Metal Anode. , 2021, Small.

[17]  Lina Wang,et al.  Stable Li-Metal Batteries Enabled by in Situ Gelation of an Electrolyte and In-Built Fluorinated Solid Electrolyte Interface. , 2021, ACS applied materials & interfaces.

[18]  Wei Sun,et al.  Natural Mineral Compounds in Energy-Storage Systems: Development, Challenges, Prospects , 2021, Energy Storage Materials.

[19]  Xufeng Wang,et al.  Coupling two-dimensional fillers with polymer chains in solid polymer electrolyte for room-temperature dendrite-free lithium-metal batteries , 2021, Energy Storage Materials.

[20]  Yan‐Bing He,et al.  Cation Vacancy-Boosted Lewis Acid-Base Interactions in a Polymer Electrolyte for High-Performance Lithium Metal Batteries. , 2021, ACS applied materials & interfaces.

[21]  Chen Chen,et al.  High-performance polymer electrolyte membrane modified with isocyanate-grafted Ti3+ doped TiO2 nanowires for lithium batteries , 2021 .

[22]  M. Winter,et al.  Multisalt chemistry in ion transport and interface of lithium metal polymer batteries , 2021, Energy Storage Materials.

[23]  Suojiang Zhang,et al.  Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery , 2021, Energy Storage Materials.

[24]  M. Armand,et al.  A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries , 2021, Nature Communications.

[25]  Chen Chen,et al.  A high-performance solid electrolyte assisted with hybrid biomaterials for lithium metal batteries. , 2021, Journal of colloid and interface science.

[26]  Suojiang Zhang,et al.  High-Voltage and Wide-Temperature Lithium Metal Batteries Enabled by Ultrathin MOF-Derived Solid Polymer Electrolytes with Modulated Ion Transport. , 2021, ACS applied materials & interfaces.

[27]  Wenpeng Li,et al.  Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium–sulfur battery , 2021 .

[28]  Yong Wang,et al.  Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries , 2021, Nano Energy.

[29]  Zheng Zhang,et al.  MOF-derived multifunctional filler reinforced polymer electrolyte for solid-state lithium batteries , 2021 .

[30]  Qingsong Tong,et al.  Highly Conductive and Thermostable Grafted Polyrotaxane/Ceramic Hybrid Polymer Electrolyte for Solid-State Lithium-Metal Batteries. , 2021, ACS applied materials & interfaces.

[31]  Chen Liu,et al.  Structural Design of Composite Polymer Electrolytes for Solid‐state Lithium Metal Batteries , 2021, ChemNanoMat.

[32]  Haolin Tang,et al.  Excellent Performances of Composite Polymer Electrolytes with Porous Vinyl-Functionalized SiO2 Nanoparticles for Lithium Metal Batteries , 2021, Polymers.

[33]  Hao He,et al.  Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries , 2021 .

[34]  Z. Mohamad,et al.  Mechanical and thermal properties of sepiolite strengthened thermoplastic polymer nanocomposites: A comprehensive review , 2021, Alexandria Engineering Journal.

[35]  Yue Ma,et al.  Metal organic frameworks enabled rational design of multifunctional PEO-based solid polymer electrolytes , 2021, Chemical Engineering Journal.

[36]  Zhongling Cheng,et al.  Flexible, Mechanically Robust, Solid-State Electrolyte Membrane with Conducting Oxide-Enhanced 3D Nanofiber Networks for Lithium Batteries. , 2021, Nano letters.

[37]  S. Lanceros‐Méndez,et al.  Magnetically active lithium-ion batteries towards battery performance improvement , 2021, iScience.

[38]  G. Du,et al.  Stable interface of a high-energy solid-state lithium metal battery via a sandwich composite polymer electrolyte , 2021 .

[39]  L. Mai,et al.  Comprehensive Insights into Electrolytes and Solid Electrolyte Interfaces in Potassium-Ion Batteries , 2021 .

[40]  L. Archer,et al.  Stabilizing metal battery anodes through the design of solid electrolyte interphases , 2021 .

[41]  M. Nakayama,et al.  Ultrafast charge transfer at the electrode−electrolyte interface via an artificial dielectric layer , 2021 .

[42]  Xi Ke,et al.  The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li + transportation , 2021, Carbon Energy.

[43]  Zhaoping Liu,et al.  Unraveling the mechanism of ion and electron migration in composite solid-state electrolyte using conductive atomic force microscopy , 2021 .

[44]  Xin Li Critical Assembly and Test Procedures Driven by Mechanical Constriction Principle for Advanced Performances of Solid‐State Batteries , 2021 .

[45]  H. Rhee,et al.  Effect of Laponite® nanoclay dispersion on electrical, structural, and photovoltaic properties of dispersed [Poly(Ethylene oxide)-succinonitrile]-LiI-I2 solid polymer electrolyte , 2021 .

[46]  Chaohe Xu,et al.  Graphene Oxide Enabled Flexible PEO-Based Solid Polymer Electrolyte for All-Solid-State Lithium Metal Battery , 2021 .

[47]  K. Yan,et al.  Double-Layered Multifunctional Composite Electrolytes for High-Voltage Solid-State Lithium-Metal Batteries. , 2021, ACS applied materials & interfaces.

[48]  C. Bowen,et al.  2D Nanomaterials for Effective Energy Scavenging , 2021, Nano-micro letters.

[49]  Libo Li,et al.  New insights for constructing solid polymer electrolytes with ideal lithium-ion transfer channels by using inorganic filler , 2021 .

[50]  Chong Liu,et al.  Lithiated nanosheets hybridized solid polymer electrolyte to construct Li+ conduction highways for advanced all-solid-state lithium battery , 2021 .

[51]  Mao‐xiang Jing,et al.  Enhanced ionic conductivity and lithium dendrite suppression of polymer solid electrolytes by alumina nanorods and interfacial graphite modification. , 2021, Journal of colloid and interface science.

[52]  Zhigang Xue,et al.  Composite polymer electrolytes reinforced by hollow silica nanotubes for lithium metal batteries , 2021 .

[53]  Yong Liu,et al.  A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries , 2021 .

[54]  R. Murugan,et al.  A brief review of recent advances in garnet structured solid electrolyte based lithium metal batteries , 2021 .

[55]  A. Manthiram,et al.  A review of composite polymer-ceramic electrolytes for lithium batteries , 2021 .

[56]  Zheng Zhang,et al.  3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries , 2020 .

[57]  M. Xiao,et al.  Polymer‐Based Solid Electrolytes: Material Selection, Design, and Application , 2020, Advanced Functional Materials.

[58]  Won Bo Lee,et al.  Polymer‐Clay Nanocomposite Solid‐State Electrolyte with Selective Cation Transport Boosting and Retarded Lithium Dendrite Formation , 2020, Advanced Energy Materials.

[59]  Lei Song,et al.  Controllable magnetic field aligned sepiolite nanowires for high ionic conductivity and high safety PEO solid polymer electrolytes. , 2020, Journal of colloid and interface science.

[60]  Z. Bi,et al.  Polydopamine Coated Lithium Lanthanum Titanate in Bilayer Membrane Electrolytes for Solid Lithium Batteries. , 2020, ACS applied materials & interfaces.

[61]  H. Wu,et al.  Solid Electrolyte Interphases on Sodium Metal Anodes , 2020, Advanced Functional Materials.

[62]  Z. Bi,et al.  Polydopamine coated garnet particles homogeneously distributing in poly(propylene carbonate)s for conductive and stable membrane electrolytes of solid lithium batteries. , 2020, ACS applied materials & interfaces.

[63]  Zhenda Lu,et al.  3D-Percolated Ceramic Nanoparticles along Natural-Cellulose-Derived Hierarchical Networks for High Li+ Conductivity and Mechanical Strength. , 2020, Nano letters.

[64]  T. Zhao,et al.  A composite solid electrolyte with a framework of vertically aligned perovskite for all-solid-state Li-metal batteries , 2020 .

[65]  H. Wu,et al.  Sustained-Release Nanocapsules Enable Long-Lasting Stabilization of Li Anode for Practical Li-Metal Batteries , 2020, Nano-micro letters.

[66]  Hailiang Wang,et al.  Inorganic/polymer hybrid layer stabilizing anode/electrolyte interfaces in solid-state Li metal batteries , 2020, Nano Research.

[67]  S. Adams,et al.  Thermal Conductive 2D Boron Nitride for High‐Performance All‐Solid‐State Lithium–Sulfur Batteries , 2020, Advanced science.

[68]  Qiang Zhang,et al.  Polyoxovanadate-polymer hybrid electrolyte in solid state batteries , 2020 .

[69]  Li-zhen Fan,et al.  Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries , 2020 .

[70]  Wanjun Li,et al.  Enhanced performance of solid-state lithium-air batteries with continuous 3D garnet network added composite polymer electrolyte , 2020 .

[71]  Zhiwen Lei,et al.  Exploring porous (zeolitic imidazolate frame work-8) ZIF-8 as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes , 2020, Nano Research.

[72]  Xiaokun Zhang,et al.  Garnet‐Polymer Composite Electrolytes with High Li + Conductivity and Transference Number via Well‐Fused Grain Boundaries in Microporous Frameworks , 2020 .

[73]  Y. Xiong,et al.  Interface engineering of Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte via multifunctional interfacial layer for all-solid-state lithium batteries , 2020, Journal of Power Sources.

[74]  Longtu Li,et al.  Enhancement of cycling stability of all-solid-state lithium-ion batteries with composite polymer electrolytes incorporating Li6.25La3Zr2Al0.25O12 nanofibers , 2020, Ionics.

[75]  U. Starke,et al.  Solid Electrolyte Interphase Evolution on Lithium Metal in Contact with Glyme-Based Electrolytes. , 2020, Small.

[76]  Yanbin Shen,et al.  Building Lithiophilic Ion‐Conduction Highways on Garnet‐Type Solid‐State Li+ Conductors , 2020, Advanced Energy Materials.

[77]  Hong‐Jie Peng,et al.  Garnet Solid Electrolyte for Advanced All‐Solid‐State Li Batteries , 2020, Advanced Energy Materials.

[78]  T. Djenizian,et al.  All-Solid-State Lithium Ion Batteries Using Self-Organized TiO2 Nanotubes Grown from Ti-6Al-4V Alloy , 2020, Molecules.

[79]  L. Mai,et al.  Three dimensional porous frameworks for lithium dendrite suppression , 2020 .

[80]  Zhiwen Lei,et al.  Hollow nanotubular clay composited comb-like methoxy poly(ethylene glycol) acrylate polymer as solid polymer electrolyte for lithium metal batteries , 2020 .

[81]  Haihui Wang,et al.  Composite Polymer Electrolyte Incorporating Metal-Organic Framework Nanosheets with Improved Electrochemical Stability for All-Solid-State Li Metal Batteries. , 2020, ACS applied materials & interfaces.

[82]  Yifei Mo,et al.  Single-atom-layer traps in a solid electrolyte for lithium batteries , 2020, Nature Communications.

[83]  I. Villaluenga,et al.  Diffusion and migration in polymer electrolytes , 2020, Progress in Polymer Science.

[84]  C. Yuan,et al.  Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries , 2020 .

[85]  Mao‐xiang Jing,et al.  Effects of surface lithiated TiO2 nanorods on room‐temperature properties of polymer solid electrolytes , 2020, International Journal of Energy Research.

[86]  Yao Zhou,et al.  Metal Organic Framework Nanorod Doped Solid Polymer Electrolyte with Decreased Crystallinity for High‐Performance All‐Solid‐State Lithium Batteries , 2020 .

[87]  Ellen Ivers-Tiffée,et al.  Benchmarking the performance of all-solid-state lithium batteries , 2020 .

[88]  Weiqing Yang,et al.  Strong Lewis Acid-base and Weak Hydrogen Bond Synergistically Enhancing Ionic Conductivity of Poly (ethylene oxide)@SiO2 Electrolytes for High Rate-capability Li-metal Battery. , 2020, ACS applied materials & interfaces.

[89]  Xingxing Gu,et al.  Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation , 2020, Nature Communications.

[90]  Jiayan Luo,et al.  MXene‐Based Mesoporous Nanosheets Toward Superior Lithium Ion Conductors , 2020, Advanced Energy Materials.

[91]  Henghui Xu,et al.  Enhanced Surface Interactions Enable Fast Li + Conduction in Oxide/Polymer Composite Electrolyte , 2020, Angewandte Chemie.

[92]  Wan-Yu Tsai,et al.  Nanoscale Mapping of Extrinsic Interfaces in Hybrid Solid Electrolytes , 2020 .

[93]  Yufeng Wu,et al.  A single lithium-ion conducting solid polymer electrolyte with superior electrochemical stability and interfacial compatibility for solid-state lithium metal battery. , 2020, ACS applied materials & interfaces.

[94]  G. Guan,et al.  Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. , 2020, Journal of colloid and interface science.

[95]  M. Sadiq,et al.  Electrical conductivity and dielectric properties of solid polymer nanocomposite films: Effect of BaTiO3 nanofiller , 2020 .

[96]  Xiaolong Li,et al.  Preparation and application of poly(ethylene oxide)‐based all solid‐state electrolyte with a walnut‐like SiO 2 as nano‐fillers , 2020 .

[97]  Yuanhua Lin,et al.  Composition Modulation and Structure Design of Inorganic-in-Polymer Composite Solid Electrolytes for Advanced Lithium Batteries. , 2020, Small.

[98]  Xiaogang Han,et al.  Well-aligned BaTiO3 nanofibers via solution blow spinning and their application in lithium composite solid-state electrolyte , 2019, Materials Express.

[99]  Yong Wang,et al.  Tailored Solid Polymer Electrolytes by Montmorillonite with High Ionic Conductivity for Lithium-Ion Batteries , 2019, Nanoscale Research Letters.

[100]  Jianyong Yu,et al.  Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries , 2019 .

[101]  T. Zhao,et al.  A novel PEO|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. , 2019, ACS applied materials & interfaces.

[102]  R. Stolkin,et al.  Recycling lithium-ion batteries from electric vehicles , 2019, Nature.

[103]  Zongjie Sun,et al.  Poly(ionic liquid)-polyethylene oxide semi-interpenetrating polymer network solid electrolyte for safe lithium metal batteries , 2019, Chemical Engineering Journal.

[104]  Lin Liu,et al.  Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes , 2019, Nature Communications.

[105]  Y. Hamam,et al.  Application of nanoparticles and composite materials for energy generation and storage , 2019 .

[106]  Jia Zhu,et al.  Li+ -Containing, Continuous Silica Nanofibers for High Li+ Conductivity in Composite Polymer Electrolyte. , 2019, Small.

[107]  Jun Chen,et al.  Safety-reinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte , 2019, Nano Research.

[108]  K. Choy,et al.  Boron nitride enhanced polymer/salt hybrid electrolytes for all-solid-state lithium ion batteries , 2019, Journal of Power Sources.

[109]  S. Radhakrishnan,et al.  Lithium ion conduction in PVA-based polymer electrolyte system modified with combination of nanofillers , 2019, Ionics.

[110]  M. Wagemaker,et al.  Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes , 2019, Nature Materials.

[111]  Chibueze V. Amanchukwu,et al.  A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes , 2019, Joule.

[112]  Kun Fu,et al.  Flexible Solid-State Electrolyte with Aligned Nanostructures Derived from Wood , 2019, ACS Materials Letters.

[113]  Aijun Li,et al.  Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte , 2019, Nano Energy.

[114]  C. Nan,et al.  Solid Garnet Batteries , 2019, Joule.

[115]  Xiaolong Li,et al.  Preparation and performance of poly(ethylene oxide)‐based composite solid electrolyte for all solid‐state lithium batteries , 2019, Journal of Applied Polymer Science.

[116]  Qiang Zhang,et al.  Intercalated Electrolyte with High Transference Number for Dendrite‐Free Solid‐State Lithium Batteries , 2019, Advanced Functional Materials.

[117]  Y. Ohki,et al.  Effects of interaction between filler and resin on the glass transition and dielectric properties of epoxy resin nanocomposites , 2019, IET Nanodielectrics.

[118]  Chaoyi Yan,et al.  Composite solid electrolytes for all-solid-state lithium batteries , 2019, Materials Science and Engineering: R: Reports.

[119]  W. Shao,et al.  Electron structure in modified BaTiO 3 /poly(vinylidene fluoride) nanocomposite with high dielectric property and energy density , 2019, IET Nanodielectrics.

[120]  Z. Wen,et al.  Composite Solid Polymer Electrolyte with Garnet Nanosheets in Poly(ethylene oxide) , 2019, ACS Sustainable Chemistry & Engineering.

[121]  Jiayan Luo,et al.  High‐Performance Solid Polymer Electrolytes Filled with Vertically Aligned 2D Materials , 2019, Advanced Functional Materials.

[122]  Jan D. Miller,et al.  Advanced Nanoclay-Based Nanocomposite Solid Polymer Electrolyte for Lithium Iron Phosphate Batteries. , 2019, ACS applied materials & interfaces.

[123]  C. Nan,et al.  Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries , 2019, Energy Storage Materials.

[124]  B. Jung,et al.  Influence of Al2O3 Nanowires on Ion Transport in Nanocomposite Solid Polymer Electrolytes , 2018, Macromolecules.

[125]  David G. Mackanic,et al.  Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries , 2018, Materials Today Nano.

[126]  Xubin Chen,et al.  Solid and Solid‐Like Composite Electrolyte for Lithium Ion Batteries: Engineering the Ion Conductivity at Interfaces , 2018, Advanced Materials Interfaces.

[127]  S. Chua,et al.  Hybrid Solid Polymer Electrolytes with Two-Dimensional Inorganic Nanofillers. , 2018, Chemistry.

[128]  H. Wu,et al.  Recent Progress of Hybrid Solid-State Electrolytes for Lithium Batteries. , 2018, Chemistry.

[129]  Yutao Li,et al.  Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries , 2018, Energy Storage Materials.

[130]  Shaofei Wang,et al.  Polymer lithium-garnet interphase for an all-solid-state rechargeable battery , 2018, Nano Energy.

[131]  R. Faccio,et al.  Lithium titanate nanotubes as active fillers for lithium-ion polyacrylonitrile solid polymer electrolytes , 2018, Ionics.

[132]  Longtu Li,et al.  Effects of the shapes of BaTiO3 nanofillers on PEO-based electrolytes for all-solid-state lithium-ion batteries , 2018, Ionics.

[133]  Sean Li,et al.  Recent Progress in Lithium Lanthanum Titanate Electrolyte towards All Solid-State Lithium Ion Secondary Battery , 2018, Critical Reviews in Solid State and Materials Sciences.

[134]  Chenglin Yan,et al.  Atomic Interlamellar Ion Path in High Sulfur Content Lithium‐Montmorillonite Host Enables High‐Rate and Stable Lithium–Sulfur Battery , 2018, Advanced materials.

[135]  Danielle M. Butts,et al.  Sulfide Solid Electrolytes for Lithium Battery Applications , 2018, Advanced Energy Materials.

[136]  Yi Cui,et al.  An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage , 2018, Nature Energy.

[137]  Kun Fu,et al.  Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries , 2018, Materials Today.

[138]  Jiayan Luo,et al.  Simultaneously Enhancing the Thermal Stability, Mechanical Modulus, and Electrochemical Performance of Solid Polymer Electrolytes by Incorporating 2D Sheets , 2018, Advanced Energy Materials.

[139]  Yayuan Liu,et al.  A Silica‐Aerogel‐Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus , 2018, Advanced materials.

[140]  Shengtao Li,et al.  Polypropylene nanocomposite for power equipment: a review , 2018, IET Nanodielectrics.

[141]  Jonas Mindemark,et al.  Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes , 2018, Progress in Polymer Science.

[142]  Yayuan Liu,et al.  Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity. , 2018, Nano letters.

[143]  Liangbing Hu,et al.  3D‐Printing Electrolytes for Solid‐State Batteries , 2018, Advanced materials.

[144]  X. Tao,et al.  Mg2B2O5 Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance. , 2018, Nano letters.

[145]  Qionglin Dai,et al.  Highly dispersive Ba0.6Sr0.4TiO3 nanoparticles modified P(VDF-HFP)/PMMA composite films with improved energy storage density and efficiency , 2018 .

[146]  M. Kadir,et al.  A conceptual review on polymer electrolytes and ion transport models , 2018 .

[147]  Xiaobo Ji,et al.  High Ion‐Conducting Solid‐State Composite Electrolytes with Carbon Quantum Dot Nanofillers , 2018, Advanced science.

[148]  Wei Luo,et al.  Promises, Challenges, and Recent Progress of Inorganic Solid‐State Electrolytes for All‐Solid‐State Lithium Batteries , 2018, Advanced materials.

[149]  Xingyi Zhou,et al.  A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte. , 2018, Angewandte Chemie.

[150]  Xin-bo Zhang,et al.  Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries , 2018, Nano Research.

[151]  Luyi Yang,et al.  Mechanisms and properties of ion-transport in inorganic solid electrolytes , 2018 .

[152]  Jiangtao Hu,et al.  A Metal–Organic‐Framework‐Based Electrolyte with Nanowetted Interfaces for High‐Energy‐Density Solid‐State Lithium Battery , 2018, Advanced materials.

[153]  F. Ding,et al.  Recent advances in solid polymer electrolytes for lithium batteries , 2017, Nano Research.

[154]  D. Teeters,et al.  Investigation of a nanoconfined, ceramic composite, solid polymer electrolyte , 2017 .

[155]  R. J. Sengwa,et al.  Effect of intercalated and exfoliated montmorillonite clay on the structural, dielectric and electrical properties of plasticized nanocomposite solid polymer electrolytes , 2017 .

[156]  Candace K. Chan,et al.  Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology. , 2017, ACS applied materials & interfaces.

[157]  M. Esfandeh,et al.  All-solid-state flexible nanocomposite polymer electrolytes based on poly(ethylene oxide): Lithium perchlorate using functionalized graphene , 2017 .

[158]  Dingchang Lin,et al.  Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires , 2017, Nature Energy.

[159]  Peng Long,et al.  High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. , 2016, Nano letters.

[160]  Mingxue Tang,et al.  Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes. , 2016, Angewandte Chemie.

[161]  Yibo Wang,et al.  Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries , 2016, Proceedings of the National Academy of Sciences.

[162]  P. Vickraman,et al.  Lead titanate/cyclic carbonate dependence on ionic conductivity of ferro/acrylate blend polymer composites , 2016 .

[163]  S. Ding,et al.  Porous γ-Fe2O3 spheres coated with N-doped carbon from polydopamine as Li-ion battery anode materials , 2016, Nanotechnology.

[164]  Wei Liu,et al.  High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). , 2016, Nano letters.

[165]  Sheng-wu Guo,et al.  Hydroxyl-riched halloysite clay nanotubes serving as substrate of NiO nanosheets for high-performance supercapacitor , 2015 .

[166]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[167]  V. Ganesan,et al.  Role of ceramic reinforcement in composite polymer electrolyte , 2015 .

[168]  R. Katiyar,et al.  Observation of ionic transport and ion-coordinated segmental motions in composite (polymer-salt-clay) solid polymer electrolyte , 2015, Ionics.

[169]  S. Ding,et al.  Hierarchical NiCo2O4 Nanosheets@halloysite Nanotubes with Ultrahigh Capacitance and Long Cycle Stability As Electrochemical Pseudocapacitor Materials , 2014 .

[170]  D. Schaetzl,et al.  Magnetic Alignment of Gamma (core)/Alpha (shell) Fe2O3 Nanorods in a Solid Polymer Electrolyte , 2014 .

[171]  H. Wiemhöfer,et al.  Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study , 2011 .

[172]  P. Bruce,et al.  Ionic conductivity in crystalline PEO6:Li(AsF6)1-x(SbF6)x. , 2006, Journal of the American Chemical Society.

[173]  P. Bruce,et al.  Raising the conductivity of crystalline polymer electrolytes by aliovalent doping. , 2005, Journal of the American Chemical Society.

[174]  P. Bruce,et al.  Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb. , 2003, Journal of the American Chemical Society.

[175]  P. Bruce,et al.  Ionic conductivity in crystalline polymer electrolytes , 2001, Nature.

[176]  A. Zalewska,et al.  Composite Polyether Electrolytes with Lewis Acid Type Additives , 2001 .

[177]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[178]  B. Steele,et al.  Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes , 1982 .

[179]  Lin Xu,et al.  3D frameworks in composite polymer Electrolytes: Synthesis, Mechanisms, and applications , 2022, Chemical Engineering Journal.