Nanopatterning of GeTe phase change films via heated-probe lithography.

The crystallization of amorphous germanium telluride (GeTe) thin films is controlled with nanoscale resolution using the heat from a thermal AFM probe. The dramatic differences between the amorphous and crystalline GeTe phases yield embedded nanoscale features with strong topographic, electronic, and optical contrast. The flexibility of scanning probe lithography enables the width and depth of the features, as well as the extent of their crystallization, to be controlled by varying probe temperature and write speed. Together, these technologies suggest a new approach to nanoelectronic and opto-electronic device fabrication.

[1]  R. Fallica,et al.  Effect of nitrogen doping on the thermal conductivity of GeTe thin films , 2013 .

[2]  J. Robinson,et al.  Nanoscale reduction of graphene fluoride via thermochemical nanolithography. , 2013, ACS nano.

[3]  W. Häberle,et al.  The "millipede" - nanotechnology entering data storage , 2002 .

[4]  Yuji Mori,et al.  Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase , 2000 .

[5]  Zhen Li,et al.  Exposure strategy and crystallization of Ge-Sb-Te thin film by maskless phase-change lithography , 2015 .

[6]  Thomas Taubner,et al.  Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses , 2014 .

[7]  C. Chou,et al.  Fabrication of Size-Controllable Nanofluidic Channels by Nanoimprinting and Its Application for DNA Stretching , 2004 .

[8]  J. Felts,et al.  Driving Surface Chemistry at the Nanometer Scale Using Localized Heat and Stress. , 2017, Nano letters.

[9]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[10]  William Paul King,et al.  The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography , 2008 .

[11]  Nanoscale crystallization of phase change Ge2Sb2Te5 film with AFM lithography. , 2010, Scanning.

[12]  Woo-Kyung Lee,et al.  Scanning probe lithography of polymers: tailoring morphology and functionality at the nanometer scale. , 2008, Scanning.

[13]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[14]  Plasma Enhanced Chemical Vapor Deposition of Conformal GeTe Layer for Phase Change Memory Applications , 2012 .

[15]  E. Riedo,et al.  Advanced scanning probe lithography. , 2014, Nature nanotechnology.

[16]  Phase-Change Characteristics and Crystal Structure in Multi Stacked GeTe/InTe Films , 2011 .

[17]  Robert M. Young,et al.  A Four-Terminal, Inline, Chalcogenide Phase-Change RF Switch Using an Independent Resistive Heater for Thermal Actuation , 2013, IEEE Electron Device Letters.

[18]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[19]  Nanoscale electrical phase-change in GeSb2Te4 films with scanning probe microscopes , 2002 .

[20]  Se-Ho Lee,et al.  Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires , 2006 .

[21]  William P King,et al.  Maskless nanoscale writing of nanoparticle-polymer composites and nanoparticle assemblies using thermal nanoprobes. , 2010, Nano letters.

[22]  M. Wuttig,et al.  A Switchable Mid‐Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability , 2015, Advanced materials.

[23]  Jingsong Wei,et al.  Chalcogenide phase-change thin films used as grayscale photolithography materials. , 2014, Optics express.

[24]  Robert M. Young,et al.  12.5 THz Fco GeTe Inline Phase-Change Switch Technology for Reconfigurable RF and Switching Applications , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[25]  Lei Zhang,et al.  Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial , 2013 .

[26]  Brent A. Nelson,et al.  Modeling and Simulation of the Interface Temperature Between a Heated Silicon Tip and a Substrate , 2008 .

[27]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[28]  Ute Drechsler,et al.  The "Millipede"-More than thousand tips for future AFM storage , 2000, IBM J. Res. Dev..

[29]  Keiji Tanaka Smallest (∼10nm) phase-change marks in amorphous and crystalline Ge2Sb2Te5 films , 2007 .

[30]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[31]  Robert E. Simpson,et al.  A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation , 2015, Scientific Reports.

[32]  J. Robinson,et al.  Direct mechanochemical cleavage of functional groups from graphene , 2015, Nature Communications.

[33]  E. H. Linfoot Principles of Optics , 1961 .

[34]  Masud Mansuripur,et al.  Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography. , 2010, Optics express.

[35]  Dongqing Li,et al.  Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing. , 2016, Lab on a chip.

[36]  Thomas Taubner,et al.  Using low-loss phase-change materials for mid-infrared antenna resonance tuning. , 2013, Nano letters.

[37]  Shubham Saxena,et al.  Nanoscale thermal analysis of an energetic material. , 2006, Nano letters.

[38]  Seth R. Marder,et al.  Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics , 2010, Science.

[39]  Luping P. Shi,et al.  Low resistance, high dynamic range reconfigurable phase change switch for radio frequency applications , 2010 .

[40]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[41]  R. Neale,et al.  A model for an amorphous semiconductor memory device , 1972 .

[42]  S. K. Bahl,et al.  Amorphous versus Crystalline GeTe Films. I. Growth and Structural Behavior , 1969 .

[43]  Hongjun Zeng,et al.  Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing. , 2010, ACS nano.

[44]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[45]  Matthias Wuttig,et al.  Defects in amorphous phase-change materials , 2013 .

[46]  Yiqun Wu,et al.  High-speed maskless nanolithography with visible light based on photothermal localization , 2017, Scientific Reports.

[47]  Nanosecond switching in GeSe phase change memory films by atomic force microscopy , 2014 .

[48]  T. L. Wright,et al.  Electrical, Thermal, and Mechanical Characterization of Silicon Microcantilever Heaters , 2006, Journal of Microelectromechanical Systems.

[49]  H. Kado,et al.  NANOMETER-SCALE RECORDING ON CHALCOGENIDE FILMS WITH AN ATOMIC FORCE MICROSCOPE , 1995 .

[50]  Xing Lan,et al.  Optically controlled GeTe phase change switch and its applications in reconfigurable antenna arrays , 2015, Defense + Security Symposium.

[51]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[52]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[53]  Changes in Chemical and Structural Properties of Phase-Change Material GeTe with Nitrogen Doping and Annealing , 2010 .

[54]  R. Young,et al.  Low-loss latching microwave switch using thermally pulsed non-volatile chalcogenide phase change materials , 2014 .

[55]  Sang-jun Choi,et al.  Evolution of the Structural and Electrical Properties of GeTe Under Different Annealing Conditions , 2012, Journal of Electronic Materials.

[56]  Xiangming Li,et al.  Toward Scalable Flexible Nanomanufacturing for Photonic Structures and Devices , 2016, Advanced materials.

[57]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.