Role of apoprotein and calcium ions in surfactant function.

Pulmonary surfactant isolated in the presence of calcium ions contains substantial amounts of the morphologic structure, tubular myelin. Chelation of these calcium ions results in disruption of this structure and attendant loss of surface adsorption. Reassembly studies indicate that ability of the lipids to rapidly form surface films is dependent on the presence of a specific surfactant protein in addition to the calcium ions. The formation of this surface-active complex (apoprotein-lipid-calcium ions) is accompanied by aggregation of the lipid. This increase in aggregation may have important implications in the mechanism of surfactant function.

[1]  J. Goerke,et al.  Role of calcium ions the structure and function of pulmonary surfactant. , 1984, Biochimica et biophysica acta.

[2]  K. Sueishi,et al.  Secretion of surfactant by primary cultures of alveolar type II cells isolated from rats. , 1982, Biochimica et biophysica acta.

[3]  M. Akabas,et al.  Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. , 1982, Science.

[4]  D. Papahadjopoulos,et al.  Modulation of membrane fusion by calcium-binding proteins. , 1982, Biophysical journal.

[5]  K. Sueishi,et al.  Isolation of a major apolipoprotein of canine and murine pulmonary surfactant. Biochemical and immunochemical characteristics. , 1981, Biochimica et biophysica acta.

[6]  D. Papahadjopoulos,et al.  Role of synexin in membrane fusion. Enhancement of calcium-dependent fusion of phospholipid vesicles. , 1981, The Journal of biological chemistry.

[7]  M. Williams,et al.  Immunocytochemical localization and identification of the major surfactant protein in adult rat lung. , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[8]  J. Boggs Intermolecular hydrogen bonding between lipids: influence on organization and function of lipids in membranes. , 1980, Canadian journal of biochemistry.

[9]  R. J. King,et al.  Intracellular metabolism of the apoproteins of pulmonary surfactant in rat lung. , 1980, Journal of applied physiology: respiratory, environmental and exercise physiology.

[10]  B. de Kruijff,et al.  Lipid polymorphism and the functional roles of lipids in biological membranes. , 1979, Biochimica et biophysica acta.

[11]  R. J. King,et al.  Physicochemical properties of dipalmitoyl phosphatidylcholine after interaction with an apolipoprotein of pulmonary surfactant. , 1979, Biochimica et biophysica acta.

[12]  J. Goerke,et al.  Pulmonary surface film stability and composition. , 1979, Journal of applied physiology: respiratory, environmental and exercise physiology.

[13]  W. Lynn,et al.  Structural characterization of a glycoprotein isolated from alveoli of patients with alveolar proteinosis. , 1979, The Journal of biological chemistry.

[14]  N. Düzgüneş,et al.  Divalent cation-induced interaction of phospholipid vesicle and monolayer membranes. , 1979, Biochimica et biophysica acta.

[15]  W. Pangborn,et al.  Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin. , 1979, Biochemistry.

[16]  S. Katyal,et al.  An immunologic study of the apoproteins of rat lung surfactant. , 1979, Laboratory investigation; a journal of technical methods and pathology.

[17]  R. J. King,et al.  Metabolism of the apoproteins in pulmonary surfactant. , 1977, Journal of applied physiology: respiratory, environmental and exercise physiology.

[18]  K. Jacobson,et al.  Studies on membrane fusion. III. The role of calcium-induced phase changes. , 1977, Biochimica et biophysica acta.

[19]  M. Williams,et al.  Conversion of lamellar body membranes into tubular myelin in alveoli of fetal rat lungs , 1977, The Journal of cell biology.

[20]  S. Kashiwamata,et al.  Sodium dodecyl sulfate-disc gel electrophoresis patterns of bovine lung surfactant. , 1977, Biochimica et biophysica acta.

[21]  S. Sahu,et al.  Structural studies on a glycoprotein isolated from alveoli of patients with alveolar proteinosis. , 1976, Biochimica et biophysica acta.

[22]  J. Gil,et al.  ISOLATION AND CHARACTERIZATION OF LAMELLAR BODIES AND TUBULAR MYELIN FROM RAT LUNG HOMOGENATES , 1973, The Journal of cell biology.

[23]  J. Clements,et al.  Isolation of apoproteins from canine surface active material. , 1973, The American journal of physiology.

[24]  J. Clements,et al.  Surface active materials from dog lung. I. Method of isolation. , 1972, The American journal of physiology.

[25]  J. Clements,et al.  Surface active materials from dog lung. II. Composition and physiological correlations. , 1972, The American journal of physiology.

[26]  Pagano Re,et al.  Physical chemistry of lipid films at the air-water interface. 3. The condensing effect of cholesterol. A critical examination of mixed-film studies. , 1972 .

[27]  F. Villalonga Surface chemistry of l-α-dipalmitoyl lecithin at the air-water interface , 1968 .