Modular network for high-rate quantum conferencing

One of the main open problems in quantum communication is the design of efficient quantum-secured networks. This is a challenging goal, because it requires protocols that guarantee both unconditional security and high communication rates, while increasing the number of users. In this scenario, continuous-variable systems provide an ideal platform where high rates can be achieved by using off-the-shelf optical components. At the same time, the measurement-device independent architecture is also appealing for its feature of removing a substantial portion of practical weaknesses. Driven by these ideas, here we introduce a modular design of continuous-variable network where each individual module is a measurement-device-independent star network. In each module, the users send modulated coherent states to an untrusted relay, creating multipartite secret correlations via a generalized Bell detection. Using one-time pad between different modules, the network users may share a quantum-secure conference key over arbitrary distances at constant rate.The ability of modern society to move towards quantum communications is dependent on the capacity to realize quantum networks with the ability to securely transmit and share information over long distance and among multiple users. The authors propose a protocol for a scalable quantum network made of modules each consisting of continuous-variable measurement-device independent applied to quantum key distribution, allowing to perform secure quantum conferencing among an arbitrary number of users.

[1]  Christian Weedbrook,et al.  Quantum cryptography without switching. , 2004, Physical review letters.

[2]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[3]  Jeffrey H. Shapiro,et al.  Floodlight quantum key distribution: A practical route to gigabit-per-second secret-key rates , 2015, 1510.08737.

[4]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[5]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[6]  Jeffrey H. Shapiro,et al.  Secure communication via quantum illumination , 2013, Quantum Inf. Process..

[7]  S. Lloyd,et al.  Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. , 2008, Physical review letters.

[8]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[9]  Hoi-Kwong Lo,et al.  Fundamental rate-loss trade-off for the quantum internet , 2016, Nature Communications.

[10]  Tobias Gehring,et al.  Single-quadrature continuous-variable quantum key distribution , 2015, Quantum Inf. Comput..

[11]  Stefano Pirandola,et al.  End-to-end capacities of a quantum communication network , 2019, Communications Physics.

[12]  S. Lloyd,et al.  Reply to 'Discrete and continuous variables for measurement-device-independent quantum cryptography' , 2015 .

[13]  Stefano Pirandola,et al.  Quantum Fidelity for Arbitrary Gaussian States. , 2015, Physical review letters.

[14]  J Eisert,et al.  Distilling Gaussian states with Gaussian operations is impossible. , 2002, Physical review letters.

[15]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[16]  Peng Huang,et al.  Long-distance continuous-variable quantum key distribution by controlling excess noise , 2016, Scientific Reports.

[17]  Radim Filip,et al.  Continuous variable quantum key distribution with modulated entangled states , 2011, Nature Communications.

[18]  Samuel L. Braunstein,et al.  Theory of channel simulation and bounds for private communication , 2017, Quantum Science and Technology.

[19]  Tobias Gehring,et al.  Continuous Variable Quantum Key Distribution with a Noisy Laser , 2015, Entropy.

[20]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[21]  Koji Azuma,et al.  Versatile relative entropy bounds for quantum networks , 2017, 1707.05543.

[22]  Stefano Pirandola,et al.  Continuous-Variable Quantum Key Distribution using Thermal States , 2011, 1110.4617.

[23]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[24]  Stefano Pirandola,et al.  Gaussian two-mode attacks in one-way quantum cryptography , 2017 .

[25]  Jeffrey H. Shapiro,et al.  Experimental Quantum Key Distribution at 1.3 Gbit/s Secret-Key Rate over a 10-dB-Loss Channel , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[26]  Stefano Pirandola,et al.  General immunity and superadditivity of two-way Gaussian quantum cryptography , 2016, Scientific Reports.

[27]  Vladyslav C. Usenko,et al.  Feasibility of continuous-variable quantum key distribution with noisy coherent states , 2009, 0904.1694.

[28]  Seth Lloyd,et al.  Continuous Variable Quantum Cryptography using Two-Way Quantum Communication , 2006, ArXiv.

[29]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.

[30]  S. Braunstein,et al.  Physics: Unite to build a quantum Internet , 2016, Nature.

[31]  Radim Filip Continuous-variable quantum key distribution with noisy coherent states , 2008 .

[32]  Seth Lloyd,et al.  Quantum cryptography approaching the classical limit. , 2010, Physical review letters.

[33]  Ying Guo,et al.  Continuous-variable measurement-device-independent multipartite quantum communication , 2015, 1512.03876.

[34]  Stefano Pirandola,et al.  Two-way quantum cryptography at different wavelengths , 2013, 1309.7973.

[35]  P. Glenn Gulak,et al.  Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography , 2017, npj Quantum Information.

[36]  Vladyslav C. Usenko,et al.  Trusted Noise in Continuous-Variable Quantum Key Distribution: A Threat and a Defense , 2016, Entropy.

[37]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[38]  M. Hayashi Quantum Information Theory , 2017 .

[39]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[40]  S. Pirandola,et al.  Continuous-variable measurement-device-independent quantum key distribution: Composable security against coherent attacks , 2017, Physical Review A.

[41]  Stefano Mancini,et al.  Two-way Gaussian quantum cryptography against coherent attacks in direct reconciliation , 2015 .

[42]  Guihua Zeng,et al.  High performance reconciliation for continuous-variable quantum key distribution with LDPC code , 2015 .

[43]  Stefano Pirandola,et al.  Quantum cryptography with an ideal local relay , 2015, SPIE Security + Defence.

[44]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[45]  Stefano Pirandola,et al.  Parameter Estimation with Almost No Public Communication for Continuous-Variable Quantum Key Distribution. , 2017, Physical review letters.

[46]  Seth Lloyd,et al.  Optimality of Gaussian discord. , 2013, Physical review letters.

[47]  Samuel L. Braunstein,et al.  Continuous-variable quantum cryptography with an untrusted relay: Detailed security analysis of the symmetric configuration , 2015, 1506.05430.

[48]  Miguel Navascués,et al.  Optimality of Gaussian attacks in continuous-variable quantum cryptography. , 2006, Physical review letters.

[49]  Stefano Pirandola,et al.  Covariance Matrices under Bell-like Detections , 2012, Open Syst. Inf. Dyn..

[50]  J. Fiurášek Gaussian transformations and distillation of entangled Gaussian states. , 2002, Physical review letters.

[51]  Stefano Pirandola,et al.  High-rate measurement-device-independent quantum cryptography , 2013, Nature Photonics.

[52]  Stefano Pirandola,et al.  Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables , 2017, 1707.04599.

[53]  Oliver Thearle,et al.  Estimation of output-channel noise for continuous-variable quantum key distribution , 2015, 1508.04859.

[54]  Jeffrey H. Shapiro,et al.  Experimental quantum key distribution at 1.3 gigabit-per-second secret-key rate over a 10 dB loss channel , 2018 .

[55]  Jeffrey H. Shapiro,et al.  Floodlight quantum key distribution: Demonstrating a framework for high-rate secure communication , 2016, 1607.00457.

[56]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[57]  Peng Huang,et al.  25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel , 2015, Scientific Reports.

[58]  Jeffrey H. Shapiro Defeating passive eavesdropping with quantum illumination , 2009 .

[59]  Stefano Pirandola,et al.  Quantum discord as a resource for quantum cryptography , 2013, Scientific Reports.

[60]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[61]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[62]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[63]  Radim Filip,et al.  Entanglement-based continuous-variable quantum key distribution with multimode states and detectors , 2014, 1412.6046.

[64]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.

[65]  Radim Filip,et al.  Long-distance continuous-variable quantum key distribution with efficient channel estimation , 2014 .

[66]  Zheshen Zhang,et al.  Entanglement's benefit survives an entanglement-breaking channel. , 2013, Physical review letters.

[67]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[68]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[69]  Mei Li,et al.  Continuous-variable QKD over 50 km commercial fiber , 2017, Quantum Science and Technology.

[70]  N. Cerf,et al.  Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. , 2006, Physical Review Letters.