Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH

[1]  Ting Zhu,et al.  Oxygen Vacancies in Amorphous InOx Nanoribbons Enhance CO2 Adsorption and Activation for CO2 Electroreduction. , 2019, Angewandte Chemie.

[2]  Jian-feng Li,et al.  Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO , 2019, Nano Research.

[3]  Wei Liu,et al.  Efficient and Robust Carbon Dioxide Electroreduction Enabled by Atomically Dispersed Snδ+ Sites , 2019, Advanced materials.

[4]  Dong Ha Kim,et al.  From CO2 methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. , 2019, Chemical Society reviews.

[5]  B. Zhang,et al.  The p-Orbital Delocalization of Main-Group Metals to Boost CO2 Electroreduction. , 2018, Angewandte Chemie.

[6]  Zhifeng Wang,et al.  Stable nanoporous Sn/SnO2 composites for efficient electroreduction of CO2 to formate over wide potential range , 2018, Applied Materials Today.

[7]  Jintao Zhang,et al.  The ensemble effect of nitrogen doping and ultrasmall SnO2 nanocrystals on graphene sheets for efficient electroreduction of carbon dioxide , 2018, Applied Catalysis B: Environmental.

[8]  Jianfeng Huang,et al.  Colloidal Nanocrystals as Heterogeneous Catalysts for Electrochemical CO2 Conversion , 2018, Chemistry of Materials.

[9]  Z. Tian,et al.  Reaction Mechanisms of Well-Defined Metal-N4 Sites in Electrocatalytic CO2 Reduction. , 2018, Angewandte Chemie.

[10]  Jiujun Zhang,et al.  Energy storage through CO2 electroreduction: A brief review of advanced Sn-based electrocatalysts and electrodes , 2018, Journal of CO2 Utilization.

[11]  Piaoping Yang,et al.  Low-Coordinated Edge Sites on Ultrathin Palladium Nanosheets Boost Carbon Dioxide Electroreduction Performance. , 2018, Angewandte Chemie.

[12]  Jian Sun,et al.  Partially reduced Sn/SnO2 porous hollow fiber: A highly selective, efficient and robust electrocatalyst towards carbon dioxide reduction , 2018, Electrochimica Acta.

[13]  Haotian Wang,et al.  Recent Advances in Electrochemical CO2‐to‐CO Conversion on Heterogeneous Catalysts , 2018, Advanced materials.

[14]  Wenguang Zhu,et al.  Nickel Doping in Atomically Thin Tin Disulfide Nanosheets Enables Highly Efficient CO2 Reduction. , 2018, Angewandte Chemie.

[15]  Zhe Zhao,et al.  Highly selective electrocatalytic reduction of CO2 to formate over Tin(IV) sulfide monolayers , 2018, Journal of Catalysis.

[16]  R. Quintero‐Bermudez,et al.  Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols , 2018, Nature Catalysis.

[17]  Guoxiong Wang,et al.  Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO. , 2018, Angewandte Chemie.

[18]  Caiyun Wang,et al.  Tunable and Efficient Tin Modified Nitrogen‐Doped Carbon Nanofibers for Electrochemical Reduction of Aqueous Carbon Dioxide , 2018 .

[19]  Lei Fan,et al.  1D SnO2 with Wire‐in‐Tube Architectures for Highly Selective Electrochemical Reduction of CO2 to C1 Products , 2018 .

[20]  J. Luterbacher,et al.  Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO2 Reduction. , 2018, Angewandte Chemie.

[21]  Michael Roemelt,et al.  Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts. , 2018, Chemical reviews.

[22]  R. Amal,et al.  Highly Selective Reduction of CO2 to Formate at Low Overpotentials Achieved by a Mesoporous Tin Oxide Electrocatalyst , 2018 .

[23]  Joshua M. Spurgeon,et al.  Reduced SnO2 Porous Nanowires with a High Density of Grain Boundaries as Catalysts for Efficient Electrochemical CO2 -into-HCOOH Conversion. , 2017, Angewandte Chemie.

[24]  Wei Liu,et al.  Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction , 2017, Nature Communications.

[25]  Jingli Luo,et al.  Shape-Dependent Electrocatalytic Reduction of CO2 to CO on Triangular Silver Nanoplates. , 2017, Journal of the American Chemical Society.

[26]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[27]  Jingjie Wu,et al.  Origin of the performance degradation and implementation of stable tin electrodes for the conversion of CO2 to fuels , 2016 .

[28]  Wilson A. Smith,et al.  Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Electrocatalysts. , 2016, Angewandte Chemie.

[29]  Jinlong Yang,et al.  Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel , 2016, Nature.

[30]  Abhijit Dutta,et al.  Monitoring the Chemical State of Catalysts for CO2 Electroreduction: An In Operando Study , 2015 .

[31]  S. Woo,et al.  Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2. , 2015, ChemSusChem.

[32]  Andrew B. Bocarsly,et al.  Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy , 2015 .

[33]  S. Sain,et al.  Influence of size and shape on the photocatalytic properties of SnO₂ nanocrystals. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  Hongyi Zhang,et al.  Active and selective conversion of CO2 to CO on ultrathin Au nanowires. , 2014, Journal of the American Chemical Society.

[35]  Abdullah M. Asiri,et al.  Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles , 2014, Nature Communications.

[36]  Matthew W. Kanan,et al.  Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper , 2014, Nature.

[37]  T. Meyer,et al.  Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. , 2014, Journal of the American Chemical Society.

[38]  P. Chu,et al.  Oxygen-vacancy and depth-dependent violet double-peak photoluminescence from ultrathin cuboid SnO2 nanocrystals , 2012 .

[39]  Matthew W. Kanan,et al.  Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. , 2012, Journal of the American Chemical Society.

[40]  Francesca Peiró,et al.  A Novel Mesoporous CaO‐Loaded In2O3 Material for CO2 Sensing , 2007 .

[41]  Sung‐Yool Choi,et al.  V-shaped tin oxide nanostructures featuring a broad photocurrent signal: an effective visible-light-driven photocatalyst. , 2006, Small.