Photoswitched wettability on inverse opal modified by a self-assembled azobenzene monolayer.

[1]  Ichimura,et al.  Light-driven motion of liquids on a photoresponsive surface , 2000, Science.

[2]  Rohit Rosario,et al.  Lotus Effect Amplifies Light-Induced Contact Angle Switching , 2004 .

[3]  Marcus Müller,et al.  Two-level structured self-adaptive surfaces with reversibly tunable properties. , 2003, Journal of the American Chemical Society.

[4]  G. Kumar,et al.  Photochemistry of azobenzene-containing polymers , 1989 .

[5]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[6]  Yurii A. Vlasov,et al.  Chemical Approaches to Three‐Dimensional Semiconductor Photonic Crystals , 2001 .

[7]  Leibler,et al.  Switchable tackiness and wettability of a liquid crystalline polymer , 1999, Science.

[8]  Lei Jiang,et al.  Titelbild: Reversible Switching between Superhydrophilicity and Superhydrophobicity (Angew. Chem. 3/2004) , 2004 .

[9]  Yanlin Song,et al.  Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer. , 2005, Chemical communications.

[10]  Eli Yablonovitch,et al.  Optics: Liquid versus photonic crystals , 1999, Nature.

[11]  Tomohiro Onda,et al.  Super-Water-Repellent Fractal Surfaces , 1995 .

[12]  Akira Fujishima,et al.  Structural color and the lotus effect. , 2003, Angewandte Chemie.

[13]  Osamu Sato,et al.  Fabrication of High-Quality Opal Films with Controllable Thickness , 2002 .

[14]  Hiroyuki Saito,et al.  Effects of surface roughness on wettability , 1998 .

[15]  H. Erbil,et al.  Transformation of a Simple Plastic into a Superhydrophobic Surface , 2003, Science.

[16]  Jane F. Bertone,et al.  Single-Crystal Colloidal Multilayers of Controlled Thickness , 1999 .

[17]  O. Velev,et al.  Porous silica via colloidal crystallization , 1997, Nature.

[18]  E. Vogler,et al.  Structure and reactivity of water at biomaterial surfaces. , 1998, Advances in colloid and interface science.

[19]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[20]  Baughman,et al.  Carbon structures with three-dimensional periodicity at optical wavelengths , 1998, Science.

[21]  J. Lahann,et al.  A Reversibly Switching Surface , 2003, Science.

[22]  Mwj Menno Prins,et al.  Fluid control in multichannel structures by electrocapillary pressure. , 2001, Science.

[23]  Lei Jiang,et al.  Self-assembly and optical properties of poly(acrylic acid)-based azo polyelectrolyte , 2004 .

[24]  Paul Rochon,et al.  Photoinduced motions in azo-containing polymers. , 2002, Chemical reviews.

[25]  Georg Papastavrou,et al.  Controlling wettability by light: illuminating the molecular mechanism , 2003, The European physical journal. E, Soft matter.

[26]  Jin Zhai,et al.  Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[27]  A. Parker,et al.  Water capture by a desert beetle , 2001, Nature.

[28]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[29]  Didem Öner,et al.  Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability , 2000 .

[30]  John Ralston,et al.  Reversible Wettability of Photoresponsive Pyrimidine-Coated Surfaces , 1999 .

[31]  Jin Zhai,et al.  Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. , 2004, Journal of the American Chemical Society.

[32]  Lei Jiang,et al.  Reversible switching between superhydrophilicity and superhydrophobicity. , 2004, Angewandte Chemie.

[33]  Kateryna Artyushkova,et al.  Reversible control of free energy and topography of nanostructured surfaces. , 2004, Journal of the American Chemical Society.

[34]  Xiaogong Wang,et al.  Synthesis, Photoresponsive Behavior, and Self-Assembly of Poly(acrylic acid)-Based Azo Polyelectrolytes , 2001 .