Mayfly Optimization Algorithm–Based PV Cell Triple-Diode Model Parameter Identification

The maximum power output and control optimization analysis of photovoltaic (PV) systems are based on accurate and reliable PV cell parameter identification. However, its difficult problems such as high nonlinearity and multimodality have become obstacles to the traditional optimization methods to obtain accurate and efficient results. This study uses a new intelligent optimization algorithm called the mayfly algorithm (MA) to efficiently identify the triple-diode model (TDM) of PV cells and uses the minimum root mean square error (RMSE) as the evaluation index to verify the effectiveness of the algorithm. Moreover, by continuously adjusting the parameters, population number, and iteration times of the MA to better balance the relationship between global development and local optimization, we can obtain more efficient and better optimization results. The research case shows that the MA is superior to other meta-heuristic algorithms in the accuracy and stability of PV cell parameter identification. For example, the minimum standard deviation (SD) of the RMSE obtained by the MA is 1,305 times smaller than another algorithm.

[1]  Bo Yang,et al.  Photovoltaic cell parameter estimation based on improved equilibrium optimizer algorithm , 2021 .

[2]  Jingbo Wang,et al.  A Powerful Bio-Inspired Optimization Algorithm Based PV Cells Diode Models Parameter Estimation , 2021, Frontiers in Energy Research.

[3]  Cai Yan,et al.  Two-Stage Variable Proportion Coefficient Based Frequency Support of Grid-Connected DFIG-WTs , 2020, IEEE Transactions on Power Systems.

[4]  Tao Yu,et al.  Optimal Mileage Based AGC Dispatch of a GenCo , 2020, IEEE Transactions on Power Systems.

[5]  Long Wang,et al.  Parameter estimation of photovoltaic cell model with Rao-1 algorithm , 2019 .

[6]  Wei Hu,et al.  Coordinated optimal operation of hydro–wind–solar integrated systems , 2019, Applied Energy.

[7]  Tao Yu,et al.  Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition , 2019, Journal of Cleaner Production.

[8]  Gengyin Li,et al.  Model and application of renewable energy accommodation capacity calculation considering utilization level of inter-provincial tie-line , 2019, Protection and Control of Modern Power Systems.

[9]  Souad Chebbi,et al.  Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches , 2018, Renewable and Sustainable Energy Reviews.

[10]  Tao Yu,et al.  Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine , 2018 .

[11]  Bin Xu,et al.  Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation , 2018 .

[12]  Jun Dong,et al.  Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers , 2018 .

[13]  Xu Chen,et al.  Parameters identification of photovoltaic models using an improved JAYA optimization algorithm , 2017 .

[14]  Ayman Youssef,et al.  The role of artificial intelligence in photo-voltaic systems design and control: A review , 2017 .

[15]  Diego Oliva,et al.  Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm , 2017 .

[16]  Ruxi Wang,et al.  Shuffled Complex Evolution on Photovoltaic Parameter Extraction: A Comparative Analysis , 2017, IEEE Transactions on Sustainable Energy.

[17]  Saad Mekhilef,et al.  Solar cell parameters extraction based on single and double-diode models: A review , 2016 .

[18]  Efstratios I. Batzelis,et al.  A Method for the Analytical Extraction of the Single-Diode PV Model Parameters , 2016, IEEE Transactions on Sustainable Energy.

[19]  Kashif Ishaque,et al.  Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review , 2015 .

[20]  Dinesh C. S. Bisht,et al.  A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm , 2015 .

[21]  Shahryar Rahnamayan,et al.  Metaheuristics in large-scale global continues optimization: A survey , 2015, Inf. Sci..

[22]  Yuqing He,et al.  Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm , 2014 .

[23]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[24]  P. Wolf,et al.  Identification of PV solar cells and modules parameters by combining statistical and analytical methods , 2013 .

[25]  Kashif Ishaque,et al.  An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE) , 2011 .

[26]  Meiying Ye,et al.  Parameter extraction of solar cells using particle swarm optimization , 2009 .

[27]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[28]  S. Karmalkar,et al.  An Analytical Method to Extract the Physical Parameters of a Solar Cell From Four Points on the Illuminated $J{-}V$ Curve , 2009, IEEE Electron Device Letters.

[29]  J. Jervase,et al.  Solar cell parameter extraction using genetic algorithms , 2001, Measurement Science and Technology.

[30]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.

[31]  Xiaoming Huang,et al.  Adaptive distributed auction-based algorithm for optimal mileage based AGC dispatch with high participation of renewable energy , 2021 .

[32]  Qinghua Wu,et al.  Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine , 2016 .

[33]  YiJie Weng,et al.  Parameter extraction of solar cells , 2014 .

[34]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[35]  D. Mayne Parameter estimation , 1966, Autom..