Polarimetry of Li-rich giants

Context. Protoplanetary nebulae typically present non-spherical envelopes. The origin of such geometry is still controversial. There are indications that it may be carried over from an earlier phase of stellar evolution, such as the AGB phase. But how early in the star's evolution does the non-spherical envelope appear? Aims. Li-rich giants show dusty circumstellar envelopes that can help answer that question. We study a sample of fourteen Li-rich giants using optical polarimetry in order to detect non-spherical envelopes around them. Methods. We used the IAGPOL imaging polarimeter to obtain optical linear polarization measurements in ${\it V}$ band. Foreground polarization was estimated using the field stars in each CCD frame. Results. After foreground polarization was removed, seven objects presented low intrinsic polarization (0.19-0.34)% and two (V859 Aql and GCSS 557) showed high intrinsic polarization values (0.87-1.16)%. This intrinsic polarization suggests that Li-rich giants present a non-spherical distribution of circumstellar dust. The intrinsic polarization level is probably related to the viewing angle of the envelope, with higher levels indicating objects viewed closer to edge-on. The correlation of the observed polarization with optical color excess gives additional support to the circumstellar origin of the intrinsic polarization in Li-rich giants. The intrinsic polarization correlates even better with the IRAS 25 $ \mu $m far infrared emission. Analysis of spectral energy distributions for the sample show dust temperatures for the envelopes that tend to be between 190 and 260 K. We suggest that dust scattering is indeed responsible for the optical intrinsic polarization in Li-rich giants. Conclusions. Our findings indicate that non-spherical envelopes may appear as early as the red giant phase of stellar evolution.

[1]  S. Jain,et al.  Polarization Measurements of Post-Asymptotic Giant Branch Candidates and Related Stars , 2005 .

[2]  Antonio Pereyra,et al.  Polarimetry toward the Musca Dark Cloud. I. The Catalog , 2004 .

[3]  J. Bjorkman,et al.  Effects of Grain Size on the Spectral Energy Distribution of Dusty Circumstellar Envelopes , 2003, astro-ph/0312276.

[4]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[5]  Wm. A. Wheaton,et al.  Spectral Irradiance Calibration in the Infrared. XIV. The Absolute Calibration of 2MASS , 2003, astro-ph/0304350.

[6]  Bruce Balick,et al.  Shapes and Shaping of Planetary Nebulae , 2002 .

[7]  Antonio Mário Magalhães,et al.  Polarimetry toward the IRAS Vela Shell. I. The Catalog , 2002 .

[8]  B. E. Reddy,et al.  Spectroscopic Study of IRAS 19285+0517 (PDS 100): A Rapidly Rotating Li-rich K Giant , 2001, astro-ph/0112259.

[9]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[10]  R. Wing The Carbon Star Phenomenon , 2000 .

[11]  C. Heiles 9286 Stars: An Agglomeration of Stellar Polarization Catalogs , 1999, astro-ph/9910303.

[12]  B. Barbuy,et al.  Li-rich giants: A survey based on IRAS colours , 1998 .

[13]  J.-C. Mermilliod,et al.  The General Catalogue of Photometric Data (GCPD). II. , 1997 .

[14]  F. Ménard,et al.  Polarization of Evolved Stars Envelopes , 1997 .

[15]  N. Drake,et al.  Lithium Enrichment-Mass-Loss Connection in K Giant Stars , 1996 .

[16]  J. Moran,et al.  Interferometric Observations of the SiO Masers and Dust Shell of VX Sagittarii , 1995 .

[17]  Ž. Ivezić,et al.  Infrared Emission and Dynamics of Outlfows in Late-Type Stars , 1995, astro-ph/9502070.

[18]  R. Reza,et al.  The Li K giant stars , 1995 .

[19]  R. Goodrich,et al.  Evidence for the Early Onset of Aspherical Structure in the Planetary Nebula Formation Process: Spectropolarimetry of Post-AGB Stars , 1994 .

[20]  A. Kemball,et al.  Observation of a Ring Structure in SiO Maser Emission from Late-Type Stars , 1994 .

[21]  J. Chapman,et al.  OH maser emission in the circumstellar envelopes of U Herculis, R Cassiopeiae and W Hydrae , 1994 .

[22]  D. Lambert,et al.  Fluorescent K I 7699 Å emission from circumstellar shells of red giants: Evidence for highly asymmetric winds , 1994 .

[23]  F. Fekel,et al.  Lithium and rapid rotation in chromospherically active single giants , 1993 .

[24]  A. Magalhães Polarization and the envelopes of B[e] supergiants in the Magellanic Clouds , 1992 .

[25]  J. D. Fix,et al.  1612 MHz OH Maser Emission from Axisymmetric Circumstellar Envelopes: Miras , 1992 .

[26]  R. Reza,et al.  A search for T-Tauri stars based on the IRAS Point Source Catalog , 1992 .

[27]  J. J. Johnson,et al.  From red giant to planetary nebula - Dust, asymmetry, and polarization , 1991 .

[28]  A. Witt,et al.  CCD SURFACE PHOTOMETRY OF IC 2220 , 1991 .

[29]  R. Gehrz Sources of Stardust in the Galaxy , 1989 .

[30]  A. Magalhães,et al.  Time-dependent spectropolarimetry of the red variable V CVn , 1986 .

[31]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .

[32]  C. Sneden,et al.  A Search for Lithium-rich Giant Stars , 1984 .

[33]  H. Bond Extremely metal-deficient red giants. I. A new objective-prism, photometric, and radial-velocity survey , 1980 .

[34]  A. Magalhães,et al.  Wavelength dependence of polarization. XXXVI - Changes in polarization across TiO bands in cool stars , 1979 .

[35]  A. Magalhães,et al.  Wavelength dependence of polarization. XXXII. Narrow-band polarization effects in cool stars. , 1977 .

[36]  D. S. Mathewson,et al.  Wavelength dependence of interstellar polarization and ratio of total to selective extinction. , 1975 .