Detecting differential patterns of interaction in molecular pathways.

We consider statistical inference for potentially heterogeneous patterns of association characterizing the expression of bio-molecular pathways across different biologic conditions. We discuss a modeling approach based on Gaussian-directed acyclic graphs and provide computational and methodological details needed for posterior inference. Our application finds motivation in reverse phase protein array data from a study on acute myeloid leukemia, where interest centers on contrasting refractory versus relapsed patients. We illustrate the proposed method through both synthetic and case study data.

[1]  Jean-Michel Marin,et al.  Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation , 2010, 1010.0300.

[2]  G. Mills,et al.  Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells , 2006, Molecular Cancer Therapeutics.

[3]  Marco Grzegorczyk,et al.  Nonparametric Bayesian Networks , 2011 .

[4]  Kenneth Rice,et al.  FDR and Bayesian Multiple Comparisons Rules , 2006 .

[5]  M. West,et al.  Sparse graphical models for exploring gene expression data , 2004 .

[6]  Steven M Kornblau,et al.  Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. , 2004, Blood.

[7]  Peter Müller,et al.  MODELING DEPENDENT GENE EXPRESSION. , 2012, Annals of statistics.

[8]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[9]  Guido Consonni,et al.  Quaderni di Dipartimento Objective Bayes Factors for Gaussian Directed Acyclic Graphical Models , 2004 .

[10]  Deepayan Sarkar,et al.  Detecting differential gene expression with a semiparametric hierarchical mixture method. , 2004, Biostatistics.

[11]  Abel Rodríguez,et al.  Sparse covariance estimation in heterogeneous samples. , 2010, Electronic journal of statistics.

[12]  R. Kohn,et al.  Nonparametric regression using Bayesian variable selection , 1996 .

[13]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[14]  Paolo Giudici,et al.  Markov Chain Monte Carlo model selection for DAG models , 2004 .

[15]  G. Casella,et al.  Penalized regression, standard errors, and Bayesian lassos , 2010 .

[16]  A. Dobra,et al.  Copula Gaussian graphical models and their application to modeling functional disability data , 2011, 1108.1680.

[17]  Marc A Suchard,et al.  Modeling Protein Expression and Protein Signaling Pathways , 2012, Journal of the American Statistical Association.

[18]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[19]  David Maxwell Chickering,et al.  Learning Equivalence Classes of Bayesian Network Structures , 1996, UAI.

[20]  J. Koster,et al.  Markov properties of nonrecursive causal models , 1996 .

[21]  M. Steel,et al.  Benchmark Priors for Bayesian Model Averaging , 2001 .

[22]  Sune Karlsson,et al.  Computational Efficiency in Bayesian Model and Variable Selection , 2007 .

[23]  James G. Scott,et al.  An exploration of aspects of Bayesian multiple testing , 2006 .

[24]  E. Levina,et al.  Joint estimation of multiple graphical models. , 2011, Biometrika.

[25]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .