Branch switching in bifurcation problems for ordinary differential equations

[1]  E. Allgower,et al.  Numerical Solution of Nonlinear Equations: Proceedings, Bremen, 1980 , 1982 .

[2]  R. Seydel Numerical computation of periodic orbits that bifurcate from stationary solutions of ordinary differential equations , 1981 .

[3]  U. Ascher,et al.  Reformulation of Boundary Value Problems into “Standard” Form , 1981 .

[4]  P. Lory Enlarging the domain of convergence for multiple shooting by the homotopy method , 1980 .

[5]  J. Keener Secondary Bifurcation and Multiple Eigenvalues , 1979 .

[6]  P. Deuflhard A stepsize control for continuation methods and its special application to multiple shooting techniques , 1979 .

[7]  H. Weber Numerische Behandlung von Verzweigungsproblemen bei gewöhnlichen Differentialgleichungen , 1979 .

[8]  Stephen E List Generic bifurcation with application to the von Kármán equations , 1978 .

[9]  M. Kubicek,et al.  Spatial structures in a reaction-diffusion system--detailed analysis of the "Brusselator". , 1978, Biophysical chemistry.

[10]  H. Schwetlick,et al.  Zur Lösung parameterabhängiger nichtlinearer Gleichungen mit singulären Jacobi-Matrizen , 1978 .

[11]  W. Rheinboldt Numerical methods for a class of nite dimensional bifur-cation problems , 1978 .

[12]  W. Langford Numerical solution of bifurcation problems for ordinary differential equations , 1977 .

[13]  Milan Kubicek,et al.  Algorithm 502: Dependence of Solution of Nonlinear Systems on a Parameter [C5] , 1976, TOMS.

[14]  R. Weiss Bifurcation in difference approximations to two-point boundary value problems , 1975 .

[15]  M. Crandall,et al.  Bifurcation from simple eigenvalues , 1971 .

[16]  I. Stakgold,et al.  Branching of Solutions of Nonlinear Equations , 1971 .

[17]  F. Odeh,et al.  Existence and Bifurcation Theorems for the Ginzburg‐Landau Equations , 1967 .

[18]  A. Feinstein,et al.  Variational Methods for the Study of Nonlinear Operators , 1966 .

[19]  J. Stoer,et al.  Numerical treatment of ordinary differential equations by extrapolation methods , 1966 .

[20]  E. Allgower,et al.  Numerical Solution of Nonlinear Equations , 1981 .

[21]  R. Seydel,et al.  A duffing equation with more than 20 branch points , 1981 .

[22]  E. Allgower,et al.  Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .

[23]  D. Sattinger SPONTANEOUS SYMMETRY BREAKING IN BIFURCATION PROBLEMS , 1980 .

[24]  Rüdiger Seydel Programme zur Numerischen Behandlung von Verzweigungsproblemen bei Nichtlinearen Gleichungen und Differentialgleichungen , 1980 .

[25]  W. Beyn On Discretizations of Bifurcation Problems , 1980 .

[26]  Hans D. Mittelmann,et al.  Bifurcation Problems and their Numerical Solution , 1980 .

[27]  G. Moore,et al.  The numerical treatment of non-trivial bifurcation points , 1980 .

[28]  Martin Golubitsky,et al.  A Theory for Imperfect Bifurcation via Singularity Theory. , 1979 .

[29]  W. Rheinboldt An adaptive continuation process for solving systems of nonlinear equations , 1978 .

[30]  R. J. Knops,et al.  Nonlinearanalysis and Mechanics : Heriot-Watt Symposium , 1978 .

[31]  J. Stoer,et al.  Optimization and optimal control : proceedings of a conference held at Oberwolfach, November 17-23, 1974 , 1975 .

[32]  P. Deuflhard A relaxation stratery for the modified Newton method , 1975 .

[33]  M. M. Vaĭnberg,et al.  Theory of branching of solutions of non-linear equations , 1974 .

[34]  P. Glansdorff,et al.  Thermodynamic theory of structure, stability and fluctuations , 1971 .