Branch switching in bifurcation problems for ordinary differential equations
暂无分享,去创建一个
[1] E. Allgower,et al. Numerical Solution of Nonlinear Equations: Proceedings, Bremen, 1980 , 1982 .
[2] R. Seydel. Numerical computation of periodic orbits that bifurcate from stationary solutions of ordinary differential equations , 1981 .
[3] U. Ascher,et al. Reformulation of Boundary Value Problems into “Standard” Form , 1981 .
[4] P. Lory. Enlarging the domain of convergence for multiple shooting by the homotopy method , 1980 .
[5] J. Keener. Secondary Bifurcation and Multiple Eigenvalues , 1979 .
[6] P. Deuflhard. A stepsize control for continuation methods and its special application to multiple shooting techniques , 1979 .
[7] H. Weber. Numerische Behandlung von Verzweigungsproblemen bei gewöhnlichen Differentialgleichungen , 1979 .
[8] Stephen E List. Generic bifurcation with application to the von Kármán equations , 1978 .
[9] M. Kubicek,et al. Spatial structures in a reaction-diffusion system--detailed analysis of the "Brusselator". , 1978, Biophysical chemistry.
[10] H. Schwetlick,et al. Zur Lösung parameterabhängiger nichtlinearer Gleichungen mit singulären Jacobi-Matrizen , 1978 .
[11] W. Rheinboldt. Numerical methods for a class of nite dimensional bifur-cation problems , 1978 .
[12] W. Langford. Numerical solution of bifurcation problems for ordinary differential equations , 1977 .
[13] Milan Kubicek,et al. Algorithm 502: Dependence of Solution of Nonlinear Systems on a Parameter [C5] , 1976, TOMS.
[14] R. Weiss. Bifurcation in difference approximations to two-point boundary value problems , 1975 .
[15] M. Crandall,et al. Bifurcation from simple eigenvalues , 1971 .
[16] I. Stakgold,et al. Branching of Solutions of Nonlinear Equations , 1971 .
[17] F. Odeh,et al. Existence and Bifurcation Theorems for the Ginzburg‐Landau Equations , 1967 .
[18] A. Feinstein,et al. Variational Methods for the Study of Nonlinear Operators , 1966 .
[19] J. Stoer,et al. Numerical treatment of ordinary differential equations by extrapolation methods , 1966 .
[20] E. Allgower,et al. Numerical Solution of Nonlinear Equations , 1981 .
[21] R. Seydel,et al. A duffing equation with more than 20 branch points , 1981 .
[22] E. Allgower,et al. Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .
[23] D. Sattinger. SPONTANEOUS SYMMETRY BREAKING IN BIFURCATION PROBLEMS , 1980 .
[24] Rüdiger Seydel. Programme zur Numerischen Behandlung von Verzweigungsproblemen bei Nichtlinearen Gleichungen und Differentialgleichungen , 1980 .
[25] W. Beyn. On Discretizations of Bifurcation Problems , 1980 .
[26] Hans D. Mittelmann,et al. Bifurcation Problems and their Numerical Solution , 1980 .
[27] G. Moore,et al. The numerical treatment of non-trivial bifurcation points , 1980 .
[28] Martin Golubitsky,et al. A Theory for Imperfect Bifurcation via Singularity Theory. , 1979 .
[29] W. Rheinboldt. An adaptive continuation process for solving systems of nonlinear equations , 1978 .
[30] R. J. Knops,et al. Nonlinearanalysis and Mechanics : Heriot-Watt Symposium , 1978 .
[31] J. Stoer,et al. Optimization and optimal control : proceedings of a conference held at Oberwolfach, November 17-23, 1974 , 1975 .
[32] P. Deuflhard. A relaxation stratery for the modified Newton method , 1975 .
[33] M. M. Vaĭnberg,et al. Theory of branching of solutions of non-linear equations , 1974 .
[34] P. Glansdorff,et al. Thermodynamic theory of structure, stability and fluctuations , 1971 .