Nutrient Incluence on a Stream Grazer: Orthocladius Microcommunities Respond to Nutrient Input

A whole—stream enrichment experiment of phosphorus and, further down—stream, of phosphorus and nitrogen, allowed us to examine the growth and density responses of the tube—building larval chironomid Orthocladius rivulorum to nutrient enrichment of the Kuparuk River in arctic Alaska, and to evaluate nutrient effects on the tube microbial community. The larva feeds by grazing a diatom monoculture of Hannaea arcus from the tube exterior, thus direct nutrient effects on the tube microbiota may translate into indirect nutrient effects on the larva. Electron microscopy indicated that tube silk was formed into a sheet, with a filamentous substructure that repeated at 50—nm intervals. Bacterial micro—colonies occurred at the points where the erect diatoms were attached to the silk. Microbial activity of Orthocladius tubes in the P—fertilized section was 2—3 times that of the control section of the river, and total microbial biomass in the P—fertilized section was 3—4 times that of the control section. Chlorophyll a was also higher on Orthocladius tubes downstream of both P and N + P fertilization sites. However, the rate of biomass accumulation on tubes was more rapid downstream of N + P addition, suggesting primary P and secondary N limitation of the rate of primary production in the river. Chlorophyll a was higher on tubes than on rocks or experimental tiles, which indicated that tubes were a more favorable algal habitat for Hannaea. Pupal tubes had less chlorophyll a than larval tubes, suggesting that larval activity may have contributed to the higher algal biomass on tubes. Orthocladius benefitted from the enhanced tube flora; larvae grew larger in the fertilized sections of the stream than in the upstream sections. The results suggest that Orthocladius with its tube and associated biota function as microcommunities that respond directly and indirectly to the surrounding nutrient regime, but have considerable trophic independence from surrounding portions of the epilithon. They may constitute 12—43% of total epilithic algal biomass.