Stochastic prediction of burst pressure in composite pressure vessels

Abstract The main objective of this research is to predict burst pressure of composite pressure vessels subjected to internal pressure taking into account manufacturing uncertainties. Firstly, first-ply-failure (FPF) of composite pressure vessels with/without liner is studied comparing performance of different failure criteria. Then, burst pressure of the vessels are deterministically predicted using progressive damage modeling based on continuum damage mechanics approach. Both theoretical modeling approaches on predicting FPF and burst pressure are validated using available experimental data. Finally, stochastic modeling is conducted to estimate burst pressure of composite pressure vessels taking into account fiber volume fraction, winding angle and mechanical and strength properties as random parameters resembling manufacturing-induced inconsistencies. Statistical data analysis shows the importance of taking into consideration manufacturing variability.

[1]  Chang-Sun Hong,et al.  Size effect on the fiber strength of composite pressure vessels , 2003 .

[2]  Jinyang Zheng,et al.  Finite element analysis of burst pressure of composite hydrogen storage vessels , 2009 .

[3]  J. Grandidier,et al.  700 bar type IV high pressure hydrogen storage vessel burst – Simulation and experimental validation , 2015 .

[4]  D. G. Hwang,et al.  An estimation of strength for composite pressure vessels , 1992 .

[5]  Timothy L. Weadon,et al.  Determination of material parameters for Abaqus progressive damage analysis of E-glass epoxy laminates , 2013 .

[6]  C. Zheng,et al.  Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel , 2015 .

[7]  C. Sun,et al.  COMPARATIVE EVALUATION OF FAILURE ANALYSIS METHODS FOR COMPOSITE LAMINATES. , 1996 .

[8]  R. Arrieux,et al.  A progressive failure analysis of a 700-bar type IV hydrogen composite pressure vessel , 2015 .

[9]  Jinyang Zheng,et al.  Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics , 2008 .

[10]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[11]  Ping Xu,et al.  Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: A review , 2012 .

[12]  R. Gibson Principles of Composite Material Mechanics , 1994 .

[13]  P. Camanho,et al.  Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials , 2002 .

[14]  Ted Belytschko,et al.  Immersed particle method for fluid–structure interaction , 2009 .

[15]  J. Grandidier,et al.  A fixed directions damage model for composite materials dedicated to hyperbaric type IV hydrogen storage vessel – Part II: Validation on notched structures , 2015 .

[16]  D. Cohen Influence of filament winding parameters on composite vessel quality and strength , 1997 .

[17]  Onur Sayman,et al.  Burst failure load of composite pressure vessels , 2009 .

[18]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[19]  Jinyang Zheng,et al.  Elasto-plastic stress analysis and burst strength evaluation of Al-carbon fiber/epoxy composite cylindrical laminates , 2008 .

[20]  S. Mantell,et al.  The effect of fiber volume fraction on filament wound composite pressure vessel strength , 2001 .

[21]  O. Sayman,et al.  Failure pressures of composite cylinders with a plastic liner , 2011 .

[22]  H. Nguyen-Xuan,et al.  A simple and robust three-dimensional cracking-particle method without enrichment , 2010 .

[23]  Tai-Yan Kam,et al.  First-ply failure strength of laminated composite pressure vessels , 1997 .

[24]  Z. Hashin,et al.  A Fatigue Failure Criterion for Fiber Reinforced Materials , 1973 .

[25]  R. Glüge Effective plastic properties of laminates made of isotropic elastic plastic materials , 2016 .

[26]  Chang-Sun Hong,et al.  Probabilistic deformation and strength prediction for a filament wound pressure vessel , 2003 .

[27]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[28]  H. Singh,et al.  A damage evolution study of E-glass/epoxy composite under low velocity impact , 2015 .

[29]  T. Rabczuk,et al.  A meshfree thin shell method for non‐linear dynamic fracture , 2007 .

[30]  J. Grandidier,et al.  A fixed directions damage model for composite materials dedicated to hyperbaric type IV hydrogen storage vessel – Part I: Model formulation and identification , 2015 .

[31]  F. Touchard,et al.  Numerical study of influence of temperature and matrix cracking on type IV hydrogen high pressure storage vessel behavior , 2014 .

[32]  H. Galiano,et al.  A probabilistic damage behavior law for composite material dedicated to composite pressure vessel , 2015 .

[33]  Richard Von Mises,et al.  Mechanik der plastischen Formänderung von Kristallen , 1928 .

[34]  X.-K. Sun,et al.  Bursting problem of filament wound composite pressure vessels , 1999 .

[35]  Ireneusz Lapczyk,et al.  Progressive damage modeling in fiber-reinforced materials , 2007 .