Infrared Acceleration Radiation

[1]  E. Linder,et al.  Thermal Radiation from an Electron with Schwarzschild-Planck Acceleration , 2023, 2304.04412.

[2]  M. Good,et al.  Thermal Larmor radiation , 2023, Progress of Theoretical and Experimental Physics.

[3]  M. Good,et al.  Electron as a Tiny Mirror: Radiation from a Worldline with Asymptotic Inertia , 2023, Physics.

[4]  Vasilios Zarikas,et al.  Extreme Electron Acceleration with Fixed Radiation Energy , 2022, Entropy.

[5]  Chi Xiong,et al.  CGHS Black Hole Analog Moving Mirror and Its Relativistic Quantum Information as Radiation Reaction , 2021, Entropy.

[6]  E. Linder,et al.  Quantum power: a Lorentz invariant approach to Hawking radiation , 2021, The European Physical Journal C.

[7]  Abay Zhakenuly,et al.  Quantum Power Distribution of Relativistic Acceleration Radiation: Classical Electrodynamic Analogies with Perfectly Reflecting Moving Mirrors , 2021, Symmetry.

[8]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[9]  F. Wilczek,et al.  Moving mirror model for quasithermal radiation fields , 2020 .

[10]  T. Tomaras,et al.  IR dynamics and entanglement entropy , 2019, 1910.07847.

[11]  T. Oikonomou,et al.  Stationary Worldline Power Distributions , 2019, International Journal of Theoretical Physics.

[12]  M. Good Reflecting at the Speed of Light , 2016, 1612.02459.

[13]  M. Good,et al.  On horizonless temperature with an accelerating mirror , 2016, Journal of High Energy Physics.

[14]  K. Coakley,et al.  Precision Measurement of the Radiative β Decay of the Free Neutron. , 2016, Physical review letters.

[15]  M. Smerlak,et al.  Entanglement entropy and negative energy in two dimensions , 2014, 1404.0602.

[16]  Sen Zhang Pre-acceleration from Landau–Lifshitz series , 2013, 1303.7120.

[17]  M. Visser,et al.  Minimal conditions for the existence of a Hawking-like flux , 2010, 1011.5593.

[18]  K. Coakley,et al.  Observation of the radiative decay mode of the free neutron , 2006, Nature.

[19]  S. Fulling Review of some recent work on acceleration radiation , 2005 .

[20]  V. I. Ritus The symmetry, inferable from Bogoliubov transformation, between processes induced by a mirror in two-dimensional and a charge in four-dimensional space-time , 2003, hep-th/0309181.

[21]  V. Cardoso,et al.  Electromagnetic radiation from collisions at almost the speed of light: An Extremely relativistic charged particle falling into a Schwarzschild black hole , 2003, gr-qc/0307104.

[22]  V. Cardoso,et al.  Gravitational radiation in D-dimensional spacetimes , 2002, hep-th/0212168.

[23]  V. I. Ritus Vacuum-vacuum amplitudes in the theory of quantum radiation by mirrors in 1+1-space and charges in 3+1-space , 2002 .

[24]  Avraham E. Mayo,et al.  Black Holes Are One-Dimensional , 2001, gr-qc/0105055.

[25]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[26]  V.I.Ritus Symmetries and causes of the coincidence of the radiation spectra of mirrors and charges in 1+1 and 3+1 spaces , 1999, hep-th/9903083.

[27]  V. I. Ritus Symmetries and causes of the coincidence of the emission spectra of mirrors and charges in 1+1 and 3+1 spaces , 1998 .

[28]  A. I. Nikishov,et al.  Emission of scalar photons by an accelerated mirror in 1+1 space and its relation to the radiation from an electrical charge in classical electrodynamics , 1995 .

[29]  A. Strominger Les Houches lectures on black holes , 1995, hep-th/9501071.

[30]  F. Wilczek Quantum Purity at a Small Price: Easing a Black Hole Paradox , 1993, hep-th/9302096.

[31]  Willey,et al.  Lifetime of a black hole. , 1987, Physical review. D, Particles and fields.

[32]  Willey,et al.  Reflections on moving mirrors. , 1987, Physical review. D, Particles and fields.

[33]  M. L. Stevenson,et al.  Observation of Muon Inner Bremsstrahlung in Deep-Inelastic Neutrino Scattering , 1983 .

[34]  P. Davies,et al.  An exactly soluble moving-mirror problem , 1982 .

[35]  A. Vilenkin,et al.  Quantum radiation by moving mirrors , 1982 .

[36]  P. Davies,et al.  Radiation from moving mirrors and from black holes , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  P. Davies,et al.  Quantum field theory in curved space–time , 1976, Nature.

[38]  W. Unruh Notes on black-hole evaporation , 1976 .

[39]  P. Davies,et al.  Radiation from a moving mirror in two dimensional space-time: conformal anomaly , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  B. Dewitt,et al.  Quantum field theory in curved spacetime , 1975 .

[41]  P. Davies Scalar production in Schwarzschild and Rindler metrics , 1975 .

[42]  S. Fulling,et al.  Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time , 1973 .

[43]  G. Moore Quantum Theory of the Electromagnetic Field in a Variable-Length One-Dimensional Cavity , 1970 .

[44]  C. Chang,et al.  On the continuous gamma-radiation accompanying the beta-decay of nuclei , 1949 .

[45]  F. Bloch,et al.  Note on the Radiation Field of the electron , 1937 .

[46]  R. Feynman,et al.  Feynman Lectures On Gravitation , 1995 .

[47]  S. Hawking Particle creation by black holes , 1975 .