An exact approach to minimizing total weighted tardiness with release dates

Abstract The study deals with scheduling a set of independent jobs with unequal release dates to minimize total weighted tardiness on a single machine. We propose new dominance properties that are incorporated in a branch and bound algorithm. The proposed algorithm is tested on a set of randomly generated problems with 10, 15 and 20 jobs. To the best of our knowledge, this is the first exact approach that attempts to solve the l|rj |ΣwjTj problem.

[1]  Chengbin Chu A branch‐and‐bound algorithm to minimize total flow time with unequal release dates , 1992 .

[2]  L. V. Wassenhove,et al.  Algorithms for scheduling a single machine to minimize the weighted number of late jobs , 1988 .

[3]  Chris N. Potts,et al.  A Branch and Bound Algorithm for the Total Weighted Tardiness Problem , 1985, Oper. Res..

[4]  George L. Vairaktarakis,et al.  The single-machine scheduling problem to minimize total tardiness subject to minimum number of tardy jobs , 1995 .

[5]  Hamilton Emmons,et al.  One-Machine Sequencing to Minimize Certain Functions of Job Tardiness , 1969, Oper. Res..

[6]  A. Kan Machine Scheduling Problems: Classification, Complexity and Computations , 1976 .

[7]  Ram Mohan V. Rachamadugu,et al.  Technical Note - A Note on the Weighted Tardiness Problem , 1987, Oper. Res..

[8]  B. J. Lageweg,et al.  Minimizing Total Costs in One-Machine Scheduling , 1975, Oper. Res..

[9]  C. Chu,et al.  Some new efficient methods to solve the n/1/ri/ϵTi scheduling problem , 1992 .

[10]  C. N. Potts,et al.  Scheduling with release dates on a single machine to minimize total weighted completion time , 1992, Discret. Appl. Math..

[11]  C. Chu A branch-and-bound algorithm to minimize total tardiness with different release dates , 1992 .

[12]  Chris N. Potts,et al.  An algorithm for single machine sequencing with release dates to minimize total weighted completion time , 1983, Discret. Appl. Math..

[13]  M. Selim Akturk,et al.  A new lower bounding scheme for the total weighted tardiness problem , 1998, Comput. Oper. Res..

[14]  W. Szwarc Adjacent orderings in single-machine scheduling with earliness and tardiness penalties , 1993 .

[15]  E. Lawler A “Pseudopolynomial” Algorithm for Sequencing Jobs to Minimize Total Tardiness , 1977 .

[16]  Chris N. Potts,et al.  A survey of algorithms for the single machine total weighted tardiness scheduling problem , 1990, Discret. Appl. Math..

[17]  Wayne E. Smith Various optimizers for single‐stage production , 1956 .

[18]  Reha Uzsoy,et al.  Single-machine scheduling with dynamic arrivals : Decomposition results and an improved algorithm , 1996 .