Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities

Abstract This paper proposes a eight-term 3-D polynomial chaotic system with three quadratic nonlinearities and describes its properties. The maximal Lyapunov exponent (MLE) of the proposed 3-D chaotic system is obtained as L1 = 6.5294. Next, new results are derived for the global chaos synchronization of the identical eight-term 3-D chaotic systems with unknown system parameters using adaptive control. Lyapunov stability theory has been applied for establishing the adaptive synchronization results. Numerical simulations are shown using MATLAB to describe the main results derived in this paper.

[1]  R. Tang,et al.  An extended active control for chaos synchronization , 2009 .

[2]  Alberto Tesi,et al.  Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems , 1992, Autom..

[3]  Valery Petrov,et al.  Controlling chaos in the Belousov—Zhabotinsky reaction , 1993, Nature.

[4]  Changchun Hua,et al.  A new chaotic secure communication scheme , 2005 .

[5]  Jinliang Wang,et al.  Bifurcation and chaos in discrete-time BVP oscillator , 2010 .

[6]  A. Pagano,et al.  Clustering of chaotic dynamics of a lean gas-turbine combustor , 2001 .

[7]  Zengqiang Chen,et al.  Existence of a new three-dimensional chaotic attractor , 2009 .

[8]  M. T. Yassen,et al.  Chaos synchronization between two different chaotic systems using active control , 2005 .

[9]  M. Siewe Siewe,et al.  Secure communication via parameter modulation in a class of chaotic systems , 2007 .

[10]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[11]  Henry Leung,et al.  A chaos secure communication scheme based on multiplication modulation , 2010 .

[12]  Chao-Jung Cheng,et al.  Robust synchronization of uncertain unified chaotic systems subject to noise and its application to secure communication , 2012, Appl. Math. Comput..

[13]  Ali Abdullah,et al.  Synchronization and secure communication of uncertain chaotic systems based on full-order and reduced-order output-affine observers , 2013, Appl. Math. Comput..

[14]  Ahmad Harb,et al.  Nonlinear chaos control in a permanent magnet reluctance machine , 2004 .

[15]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Zeraoulia Elhadj,et al.  Dynamical Analysis of a 3-D Chaotic System with only Two Quadratic Nonlinearities , 2008, J. Syst. Sci. Complex..

[17]  Habib Dimassi,et al.  A new secured transmission scheme based on chaotic synchronization via smooth adaptive unknown-input observers , 2012 .

[18]  Ioannis M. Kyprianidis,et al.  Image encryption process based on chaotic synchronization phenomena , 2013, Signal Process..

[19]  Wansheng Tang,et al.  Analysis and control for a new chaotic system via piecewise linear feedback , 2009 .

[20]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[21]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[22]  M. Inoue,et al.  A chaos neuro-computer , 1991 .

[23]  O. Rössler An equation for continuous chaos , 1976 .

[24]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[25]  Guanrong Chen,et al.  Chaos synchronization of the master-slave generalized Lorenz systems via linear state error feedback control , 2007, 0807.2107.

[26]  Wen Tao Zhu Towards secure and communication-efficient broadcast encryption systems , 2013, J. Netw. Comput. Appl..

[27]  Jinde Cao,et al.  An adaptive chaotic secure communication scheme with channel noises , 2008 .

[28]  Alain Arneodo,et al.  Possible new strange attractors with spiral structure , 1981 .

[29]  X. Liao,et al.  Cryptanalysis and improvement on a block cryptosystem based on iteration a chaotic map , 2007 .

[30]  Chun-Chieh Wang,et al.  A new adaptive variable structure control for chaotic synchronization and secure communication , 2004 .

[31]  Wei-Der Chang,et al.  Digital secure communication via chaotic systems , 2009, Digit. Signal Process..

[32]  Yoshihiko Nakamura,et al.  The chaotic mobile robot , 2001, IEEE Trans. Robotics Autom..

[33]  Hsien-Keng Chen,et al.  Anti-control of chaos in rigid body motion , 2004 .

[34]  V. Sundarapandian,et al.  Analysis, control, synchronization, and circuit design of a novel chaotic system , 2012, Math. Comput. Model..

[35]  Miguel Romera,et al.  Cryptanalyzing a discrete-time chaos synchronization secure communication system , 2003, nlin/0311046.

[36]  Cheng-Fang Huang,et al.  Design and implementation of digital secure communication based on synchronized chaotic systems , 2010, Digit. Signal Process..

[37]  Qigui Yang,et al.  A Chaotic System with One saddle and Two Stable Node-Foci , 2008, Int. J. Bifurc. Chaos.

[38]  J. Kutz,et al.  Characterizing bifurcations and chaos in multiwavelength lasers with intensity-dependent loss and saturable homogeneous gain , 2012 .