Comparative density functional theory study of the structures and properties of metallophthalocyanines of group IV B

Abstract Density functional theory (DFT) calculations were carried out to comparatively describe the molecular structures, molecular orbital energy gaps, atomic charges, infrared (IR) and Raman spectra of lead phthalocyaninate (PbPc), tin phthalocyaninate (SnPc), germanium phthalocyaninate (GePc), tin (IV) dichlorophthalocyaninate (PcSnCl 2 ), and germanium (IV) dichlorophthalocyaninate (PcGeCl 2 ). The calculated structural data and the simulated IR spectrum of PbPc correspond well with the experimental result. The important effects of axial ligands and ionic radius of metal center to the molecular structures, molecular orbital and atomic charges are described, and the metal-sensitive peaks in the IR and Raman spectra are identified by comparative study of the five complexes with different central metals and axial ligands.

[1]  M. Frisch,et al.  Using redundant internal coordinates to optimize equilibrium geometries and transition states , 1996, J. Comput. Chem..

[2]  G. Keresztury,et al.  Vibrational analysis of 2-nitrophenol. A joint FT-IR, FT-Raman and scaled quantum mechanical study , 1998 .

[3]  M. Kenney,et al.  Synthesis and Excited State Dynamics of μ-Oxo Group IV Metal Phthalocyanine Dimers: A Laser Photoexcitation Study , 2001 .

[4]  G. U. Kulkarni,et al.  An Investigation of Two-Dimensional Arrays of Thiolized Pd Nanocrystals , 2000 .

[5]  S. Scheiner,et al.  Effects of peripheral substituents and axial ligands on the electronic structure and properties of iron phthalocyanine. , 2004, Inorganic chemistry.

[6]  Roger Guilard,et al.  The porphyrin handbook , 2002 .

[7]  T. Spiro,et al.  Computational Modeling of Metalloporphyrin Structure and Vibrational Spectra: Porphyrin Ruffling in NiTPP , 2000 .

[8]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[9]  P. N. Day,et al.  Calculation of the structure and absorption spectra of phthalocyanines in the gas-phase and in solution , 1998 .

[10]  A. Lever,et al.  Phthalocyanines : properties and applications , 1989 .

[11]  D. Haarer,et al.  Present limits of data storage using dye molecules in solid matrices , 1995 .

[12]  John D. Wright,et al.  Gas adsorption on phthalocyanines and its effects on electrical properties , 1989 .

[13]  N. Ishikawa,et al.  Interaction between f-electronic systems in dinuclear lanthanide complexes with phthalocyanines. , 2002, Journal of the American Chemical Society.

[14]  J. V. van Lier,et al.  Metal complexes as photo- and radiosensitizers. , 1999, Chemical reviews.

[15]  Takayoshi Kobayashi,et al.  Direct observation of vibrational dynamics in tin phthalocyanine , 2004 .

[16]  N. McKeown Phthalocyanine Materials: Synthesis, Structure and Function , 1998 .

[17]  P. Gregory Industrial applications of phthalocyanines , 2000 .

[18]  Vibrational spectra and structure of zinc phthalocyanine , 1999 .

[19]  Dieter Meissner,et al.  Organic Solar Cells , 1991 .

[20]  H. Tian,et al.  Comparative studies on the structures, infrared spectrum, and thermodynamic properties of phthalocyanine using ab initio Hartree-Fock and density functional theory methods , 2002 .

[21]  Tomás Torres,et al.  Phthalocyanines and related compounds:organic targets for nonlinear optical applications , 1998 .

[22]  C. Adamo,et al.  Absorption spectra of first-row transition metal complexes of bacteriochlorins: a theoretical analysis. , 2005, The journal of physical chemistry. B.

[23]  M. Lopatin,et al.  Some reactions of phthalocyanines of silicon, germanium and tin under alkaline conditions , 2001 .

[24]  H. Tian,et al.  A density functional theory study on the structure and properties of the tert-butyl substituted phthalocyanines , 2002 .

[25]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[26]  H. Eichhorn Mesomorphic phthalocyanines, tetraazaporphyrins, porphyrins and triphenylenes as charge‐transporting materials , 2000 .

[27]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[28]  C. Adamo,et al.  The Oxidation of Thiols by Cobalt N4-Complexes: a Correlation between Theory and Experiments , 2001 .

[29]  Peter Gregory,et al.  High-Technology Applications of Organic Colorants , 1991 .

[30]  Michael Hanack,et al.  Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines , 2000 .

[31]  T. Nyokong,et al.  Synthesis, photophysical and photochemical studies of germanium and tin phthalocyanine complexes , 2002 .

[32]  K. Ukei Electroconductive Properties of a One-Dimensional Conductor Lead Phthalocyanine , 1976 .

[33]  Guntram Rauhut,et al.  Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields , 1995 .

[34]  Eugeny A. Lukyanets,et al.  Phthalocyanines as Photosensitizers in the Photodynamic Therapy of Cancer , 1999 .

[35]  H. Kuroda,et al.  Structure of lead phthalocyanine (triclinic form) , 1982 .

[36]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[37]  H. Höpfl,et al.  Microwave assisted stereoselective synthesis of cis-substituted TinIV phthalocyanine dicarboxylates. application as corrosion inhibitors. , 2004, Inorganic chemistry.

[38]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .