One-step radiosynthesis of 4-nitrophenyl 2-[(18) F]fluoropropionate ([(18) F]NFP); improved preparation of radiolabeled peptides for PET imaging.

The versatile (18) F-labeled prosthetic group, 4-nitrophenyl 2-[(18) F]fluoropropionate ([(18) F]NFP), was synthesized in a single step in 45 min from 4-nitrophenyl 2-bromopropionate, with a decay corrected radiochemical yield of 26.2% ± 2.2%. Employing this improved synthesis of [(18) F]NFP, [(18) F]GalactoRGD - the current 'gold standard' tracer for imaging the expression of αV β3 integrin - was prepared with high specific activity in 90 min and 20% decay corrected radiochemical yield from [(18) F]fluoride.

[1]  H. Maecke,et al.  Radiolabeled Peptides: Valuable Tools for the Detection and Treatment of Cancer , 2012, Theranostics.

[2]  H. Maecke,et al.  Radiopharmaceutical development of radiolabelled peptides , 2012, European Journal of Nuclear Medicine and Molecular Imaging.

[3]  Rhona A. Berganos,et al.  First Experience with Clinical-Grade [18F]FPP(RGD)2: An Automated Multi-step Radiosynthesis for Clinical PET Studies , 2012, Molecular Imaging and Biology.

[4]  Xiaoyuan Chen,et al.  Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. , 2011, Bioconjugate chemistry.

[5]  R. Kimura,et al.  PET Imaging of Integrin Positive Tumors Using 18F Labeled Knottin Peptides , 2011, Theranostics.

[6]  Rhona A. Berganos,et al.  Pilot pharmacokinetic and dosimetric studies of (18)F-FPPRGD2: a PET radiopharmaceutical agent for imaging α(v)β(3) integrin levels. , 2011, Radiology.

[7]  Xiaoyuan Chen,et al.  18F-Labeled GRPR Agonists and Antagonists: A Comparative Study in Prostate Cancer Imaging , 2011, Theranostics.

[8]  M. Schwaiger,et al.  PET Imaging of Integrin αVβ3 Expression , 2011, Theranostics.

[9]  D E Olberg,et al.  Labeling strategies of peptides with ¹⁸F for positron emission tomography. , 2010, Current topics in medicinal chemistry.

[10]  Kai Chen,et al.  18F-Labeled Galacto and PEGylated RGD Dimers for PET Imaging of αvβ3 Integrin Expression , 2010, Molecular Imaging and Biology.

[11]  R. Valkema,et al.  Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. , 2010, Endocrine-related cancer.

[12]  A. Cuthbertson,et al.  One step radiosynthesis of 6-[(18)F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([(18)F]F-Py-TFP): a new prosthetic group for efficient labeling of biomolecules with fluorine-18. , 2010, Journal of medicinal chemistry.

[13]  Shuang Liu Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. , 2009, Bioconjugate chemistry.

[14]  R. Valkema,et al.  Tumor imaging and therapy using radiolabeled somatostatin analogues. , 2009, Accounts of chemical research.

[15]  B. Felding-Habermann,et al.  Activation of tumor cell integrin αvβ3 controls angiogenesis and metastatic growth in the brain , 2009, Proceedings of the National Academy of Sciences.

[16]  H. Kessler,et al.  Ligands for mapping alphavbeta3-integrin expression in vivo. , 2009, Accounts of chemical research.

[17]  H. Wester,et al.  Molecular imaging targeting peptide receptors. , 2009, Methods.

[18]  J. Reubi,et al.  Peptide-Based Probes for Cancer Imaging , 2008, Journal of Nuclear Medicine.

[19]  Markus Schwaiger,et al.  [18F]Galacto-RGD Positron Emission Tomography for Imaging of αvβ3 Expression on the Neovasculature in Patients with Squamous Cell Carcinoma of the Head and Neck , 2007, Clinical Cancer Research.

[20]  W. Cai,et al.  18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of αvβ3 integrin expression , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[21]  M. Schwaiger,et al.  Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[22]  M. Schwaiger,et al.  Radiolabeled carbohydrated somatostatin analogs: a review of the current status. , 2004, Cancer biotherapy & radiopharmaceuticals.

[23]  J. Reubi Peptide receptors as molecular targets for cancer diagnosis and therapy. , 2003, Endocrine reviews.

[24]  Milind Rajopadhye,et al.  Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. , 2002, Cancer research.

[25]  Sibylle Ziegler,et al.  Noninvasive Imaging of αvβ3 Integrin Expression Using 18F-labeled RGD-containing Glycopeptide and Positron Emission Tomography , 2001 .

[26]  J W Smith,et al.  Integrin activation controls metastasis in human breast cancer. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Horst Kessler,et al.  Radiolabeled αvβ3 Integrin Antagonists: A New Class of Tracers for Tumor Targeting , 1999 .

[28]  W. Eckelman,et al.  One-step synthesis of 18F labeled [18F]-N-succinimidyl 4-(fluoromethyl)benzoate for protein labeling. , 1994, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[29]  H. Coenen,et al.  Fluoroacylation agents based on small n.c.a. [18F]fluorocarboxylic acids , 1994 .

[30]  H. Coenen,et al.  N.C.A. 18F-fluoroacylation via fluorocarboxylic acid esters , 1988 .

[31]  David A. Cheresh,et al.  Integrins in cancer: biological implications and therapeutic opportunities , 2010, Nature Reviews Cancer.

[32]  J. Katzenellenbogen,et al.  Facile nucleophilic fluorination reactions using tert-alcohols as a reaction medium: significantly enhanced reactivity of alkali metal fluorides and improved selectivity. , 2008, The Journal of organic chemistry.

[33]  S. Gambhir,et al.  Quantitative PET Imaging of Tumor Integrin αvβ3 Expression with 18F-FRGD2 , 2006 .

[34]  M. Schwaiger,et al.  [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. , 2004, Bioconjugate chemistry.