Localized Charge Transfer Process and Surface Band Bending in Methane Sensing by GaN Nanowires

The physicochemical processes at the surfaces of semiconductor nanostructures involved in electrochemical and sensing devices are strongly influenced by the presence of intrinsic or extrinsic defects. For revelation of the surface controlled sensing mechanism, intentional lattice oxygen defects are created on the surfaces of GaN nanowires for the elucidation of charge transfer process in methane (CH4) sensing. Experimental and simulation results of electron energy loss spectroscopy (EELS) studies on oxygen rich GaN nanowires confirmed the possible presence of 2(ON) and VGa–3ON defect complexes. A global resistive response for sensor devices of ensemble nanowires and a localized charge transfer process in single GaN nanowires are studied by in situ scanning Kelvin probe microscopy (SKPM). A localized charge transfer process, involving the VGa–3ON defect complex on a nanowire surface, is attributed to controlling the global gas sensing behavior of the oxygen rich ensemble GaN nanowires.

[1]  Thomas Richter,et al.  Size-dependent photoconductivity in MBE-grown GaN-nanowires. , 2005, Nano letters.

[2]  B. Raj,et al.  Enhanced Surface Potential Variation on Nanoprotrusions of GaN Microbelt As a Probe for Humidity Sensing , 2011 .

[3]  T. Frauenheim,et al.  Effect of oxygen on the growth of (101̄0) GaN surfaces: The formation of nanopipes , 1998 .

[4]  U. Diebold,et al.  The surface and materials science of tin oxide , 2005 .

[5]  Z. Mi,et al.  Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode. , 2013, Nano letters.

[6]  G. A. Slack,et al.  Some effects of oxygen impurities on AlN and GaN , 2002 .

[7]  C. Hsu,et al.  Nanohomojunction (GaN) and Nanoheterojunction (InN) Nanorods on One‐Dimensional GaN Nanowire Substrates , 2004 .

[8]  J. Northrup Oxygen-richGaN(101¯0)surfaces: First-principles total energy calculations , 2006 .

[9]  S. Dash,et al.  Novel single phase vanadium dioxide nanostructured films for methane sensing near room temperature , 2014 .

[10]  K. Fleischer,et al.  Direct experimental evidence for the role of oxygen in the luminescent properties of GaN , 1999 .

[11]  Wolfgang Göpel,et al.  SnO2 sensors: current status and future prospects☆ , 1995 .

[12]  F. Ren,et al.  Hydrogen sensing characteristics of semipolar (112¯2) GaN Schottky diodes , 2014 .

[13]  R. J. Shul,et al.  GAN : PROCESSING, DEFECTS, AND DEVICES , 1999 .

[14]  D. Théron,et al.  Surface potential of n- and p-type GaN measured by Kelvin force microscopy , 2008 .

[15]  Influence of in-plane and bridging oxygen vacancies of SnO2 nanostructures on CH4 sensing at low operating temperatures , 2014, 1508.07436.

[16]  Nancy C. Giles,et al.  Controlled oxygen doping of GaN using plasma assisted molecular-beam epitaxy , 2001 .

[17]  P. B. Allen,et al.  Photocatalytic Water Oxidation at the GaN (101̄0)-Water Interface , 2010 .

[18]  Wolfgang B Fischer,et al.  Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor. , 2011, Analytical chemistry.

[19]  A. K. Tyagi,et al.  Kinetics and Physicochemical Process of Photoinduced Hydrophobic ↔ Superhydrophilic Switching of Pristine and N-doped TiO2 Nanotube Arrays , 2013 .

[20]  R. Oliver,et al.  Unintentional doping in GaN. , 2012, Physical chemistry chemical physics : PCCP.

[21]  J. Yates,et al.  Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. , 2012, Chemical reviews.

[22]  Ion Tiginyanu,et al.  A GaN-based two-sensor array for methane detection in an ethanol environment , 2006 .

[23]  Stephen J. Pearton,et al.  Gallium nitride-based gas, chemical and biomedical sensors , 2012, IEEE Instrumentation & Measurement Magazine.

[24]  Charles M. Lieber,et al.  Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices , 2003 .

[25]  D. Kohl The role of noble metals in the chemistry of solid-state gas sensors , 1990 .

[26]  Z. Mi,et al.  Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting , 2014, Nature Communications.

[27]  R. Egerton Energy-Loss Instrumentation , 2011 .

[28]  Junqiao Wu,et al.  When group-III nitrides go infrared: New properties and perspectives , 2009 .

[29]  Hadis Morkoç,et al.  GaN resistive hydrogen gas sensors , 2005 .

[30]  Jason L. Johnson,et al.  Room temperature hydrogen detection using Pd-coated GaN nanowires , 2008 .

[31]  M. Reshchikov,et al.  Temperature-dependent Kelvin probe measurements of band bending in p-type GaN , 2012 .

[32]  Influence of oxygen in architecting large scale nonpolar GaN nanowires , 2013, 1508.07425.

[33]  E. Monroy,et al.  Room-temperature photodetection dynamics of single GaN nanowires. , 2012, Nano letters.

[34]  Abhishek Motayed,et al.  Highly selective GaN-nanowire/TiO2-nanocluster hybrid sensors for detection of benzene and related environment pollutants , 2011, Nanotechnology.

[35]  Hadis Morkoç,et al.  Surface band bending of a-plane GaN studied by scanning Kelvin probe microscopy , 2006 .

[36]  Partha Bhattacharyya,et al.  Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array , 2014 .

[37]  Guowei Yang,et al.  Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen , 2008 .

[38]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[39]  P. Yang,et al.  Self-Organized GaN Quantum Wire UV Lasers , 2003 .

[40]  H. Morkoç,et al.  Luminescence properties of defects in GaN , 2005 .

[41]  F. Ren,et al.  Effect of humidity on hydrogen sensitivity of Pt-gated AlGaN/GaN high electron mobility transistor based sensors , 2010 .

[42]  Martin Eickhoff,et al.  Influence of surface oxides on hydrogen-sensitive Pd:GaN Schottky diodes , 2003 .

[43]  David Bastviken,et al.  Methane fluxes show consistent temperature dependence across microbial to ecosystem scales , 2014, Nature.

[44]  Ian H. Stevenson,et al.  Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles , 2006 .

[45]  A. K. Tyagi,et al.  Direct label free ultrasensitive impedimetric DNA biosensor using dendrimer functionalized GaN nanowires. , 2013, Biosensors & bioelectronics.

[46]  A. Soudi,et al.  Diameter-dependent surface photovoltage and surface state density in single semiconductor nanowires. , 2012, Nano letters.

[47]  N. Browning,et al.  Role of oxygen at screw dislocations in GaN. , 2003, Physical review letters.

[48]  R. Egerton,et al.  Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[49]  A. K. Tyagi,et al.  Room temperature H2 sensing using functionalized GaN nanotubes with ultra low activation energy , 2013 .

[50]  Kai Cui,et al.  Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. , 2011, Nano letters.