A New Class of 2q-Point Nonstationary Subdivision Schemes and Their Applications

The main objective of this study is to introduce a new class of 2 q -point approximating nonstationary subdivision schemes (ANSSs) by applying Lagrange-like interpolant. The theory of asymptotic equivalence is applied to find the continuity of the ANSSs. These schemes can be nicely generalized to contain local shape parameters that allow the user to locally adjust the shape of the limit curve/surface. Moreover, many existing approximating stationary subdivision schemes (ASSSs) can be obtained as nonstationary counterparts of the proposed ANSSs.

[1]  Shahid S. Siddiqi,et al.  Shape preservation of 4-point interpolating non-stationary subdivision scheme , 2017, J. Comput. Appl. Math..

[2]  Martin Aigner,et al.  Circular spline fitting using an evolution process , 2009, J. Comput. Appl. Math..

[3]  P. Shunmugaraj,et al.  An interpolating 6-point C2 non-stationary subdivision scheme , 2009 .

[4]  G. Mustafa,et al.  The m-point approximating subdivision scheme , 2009 .

[5]  Ling Shi,et al.  Circular Arc Snakes and Kinematic Surface Generation , 2013, Comput. Graph. Forum.

[6]  D. Levin,et al.  Analysis of asymptotically equivalent binary subdivision schemes , 1995 .

[7]  Rabia Hameed,et al.  Family of a-point b-ary subdivision schemes with bell-shaped mask , 2017, Appl. Math. Comput..

[8]  Nira Dyn,et al.  Four-point curve subdivision based on iterated chordal and centripetal parameterizations , 2009, Comput. Aided Geom. Des..

[9]  Wardat us Salam,et al.  Chaikin’s perturbation subdivision scheme in non-stationary forms , 2016 .

[10]  Carolina Vittoria Beccari,et al.  A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics , 2007, Comput. Aided Geom. Des..

[11]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[12]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[13]  P. Shunmugaraj,et al.  A non-stationary subdivision scheme for curve interpolation , 2008 .

[14]  S. Siddiqi,et al.  Ternary approximating non-stationary subdivision schemes for curve design , 2014 .

[15]  Jieqing Tan,et al.  A combined approximating and interpolating ternary 4-point subdivision scheme , 2019, J. Comput. Appl. Math..

[16]  Zhixun Su,et al.  Non-stationary subdivision for exponential polynomials reproduction , 2013 .

[17]  Jieqing Tan,et al.  A non-stationary binary three-point approximating subdivision scheme , 2016, Appl. Math. Comput..

[18]  Huamin Zhang The eigenvalues range of a class of matrices and some applications in Cauchy-Schwarz inequality and iterative methods , 2018, Appl. Math. Comput..

[19]  P. C. Das,et al.  A subdivision algorithm for trigonometric spline curves , 2002, Comput. Aided Geom. Des..

[20]  Muhammad Aslam,et al.  A Subdivision-Regularization Framework for Preventing Over Fitting of Data by a Model , 2013 .

[21]  C. Conti,et al.  A New Family of Interpolatory Non-Stationary Subdivision Schemes for Curve Design in Geometric Modeling , 2010 .

[22]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[23]  G. Mustafa,et al.  A Family of Even-Point Ternary Approximating Schemes , 2012 .

[24]  Nira Dyn,et al.  Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..

[25]  Carolina Vittoria Beccari,et al.  An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control , 2007, Comput. Aided Geom. Des..

[26]  Aslam Muhammad,et al.  (2n-1)-Point Ternary Approximating and Interpolating Subdivision Schemes , 2011, J. Appl. Math..

[27]  Nira Dyn,et al.  Convergence of univariate non-stationary subdivision schemes via asymptotical similarity , 2014, 1410.2729.

[28]  D. Baleanu,et al.  Family of odd point non-stationary subdivision schemes and their applications , 2019, Advances in Difference Equations.

[29]  P. Shunmugaraj,et al.  Some Interpolating Non-stationary Subdivision Schemes , 2011, 2011 International Symposium on Computer Science and Society.

[30]  Sunita Daniel,et al.  An approximating C2 non-stationary subdivision scheme , 2009, Comput. Aided Geom. Des..

[31]  Hongchan Zheng,et al.  P-ary Subdivision Generalizing B-splines , 2009, 2009 Second International Conference on Computer and Electrical Engineering.

[32]  Faheem Khan,et al.  The Odd-Point Ternary Approximating Schemes , 2011, Am. J. Comput. Math..

[33]  D. Levin,et al.  Stationary and non-stationary binary subdivision schemes , 1992 .

[34]  P. Shunmugaraj,et al.  Chapter 1: Three Point Stationary and Non-stationary Subdivision Schemes , 2008, 2008 3rd International Conference on Geometric Modeling and Imaging.