Positive diagonal solutions to the Lyapunov equations

We study various stability type conditions on a matrix A related to the consistency of the Lyapunov equation AD+DAt positive definite, where D is a positive diagonal matrix. Such problems arise in mathematical economics, in the study of time-invariant continuous-time systems and in the study of predator-prey systems. Using a theorem of the alternative, a characterization is given for all A satisfying the above equation. In addition, some necessary conditions for consistency and some related ideas are discussed. Finally, a method for constructing a solution D to the equation is given for matrices A satisfying certain conditions.