A Low-Rank Solver for the Navier-Stokes Equations with Uncertain Viscosity
暂无分享,去创建一个
[1] Howard C. Elman,et al. A Low-Rank Multigrid Method for the Stochastic Steady-State Diffusion Problem , 2016, SIAM J. Matrix Anal. Appl..
[2] Hermann G. Matthies,et al. Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format , 2015, SIAM/ASA J. Uncertain. Quantification.
[3] Peter Benner,et al. Solving Optimal Control Problems governed by Random Navier-Stokes Equations using Low-Rank Methods , 2017 .
[4] Howard C. Elman,et al. Block-diagonal preconditioning for spectral stochastic finite-element systems , 2008 .
[5] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[6] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[7] Howard C. Elman,et al. Solving the Stochastic Steady-State Diffusion Problem using , 2006 .
[8] Hermann G. Matthies,et al. Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats , 2014, Comput. Math. Appl..
[9] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[10] Martin Stoll,et al. A Low-Rank in Time Approach to PDE-Constrained Optimization , 2015, SIAM J. Sci. Comput..
[11] Abubakr Gafar Abdalla,et al. Probability Theory , 2017, Encyclopedia of GIS.
[12] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[13] Daniel Kressner,et al. Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..
[14] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[15] Anthony Nouy,et al. Model Reduction Based on Proper Generalized Decomposition for the Stochastic Steady Incompressible Navier-Stokes Equations , 2014, SIAM J. Sci. Comput..
[16] Howard C. Elman,et al. Efficient Iterative Solvers for Stochastic Galerkin Discretizations of Log-Transformed Random Diffusion Problems , 2012, SIAM J. Sci. Comput..
[17] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[18] Kookjin Lee,et al. A Preconditioned Low-Rank Projection Method with a Rank-Reduction Scheme for Stochastic Partial Differential Equations , 2016, SIAM J. Sci. Comput..
[19] Howard C. Elman,et al. Stochastic Galerkin methods for the steady-state Navier-Stokes equations , 2015, J. Comput. Phys..
[20] Stefan Vandewalle,et al. Iterative Solvers for the Stochastic Finite Element Method , 2008, SIAM J. Sci. Comput..
[21] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[22] A. Nouy. A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .
[23] F. Henrotte,et al. Accelerating Non-Linear Time-Harmonic Problems by a Hybrid Picard-Newton Approach , 2002 .
[24] Dirk Roose,et al. An Adaptive Newton-Picard Algorithm with Subspace Iteration for Computing Periodic Solutions , 1998, SIAM J. Sci. Comput..
[25] Roger G. Ghanem,et al. Hierarchical Schur complement preconditioner for the stochastic Galerkin finite element methods , 2012, Numer. Linear Algebra Appl..
[26] Carl D. Meyer,et al. Matrix Analysis and Applied Linear Algebra , 2000 .
[27] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[28] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[29] Peter Benner,et al. Low-Rank Solution of Unsteady Diffusion Equations with Stochastic Coefficients , 2015, SIAM/ASA J. Uncertain. Quantification.
[30] Lars Grasedyck,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .
[31] Hermann G. Matthies,et al. Solving stochastic systems with low-rank tensor compression , 2012 .
[32] Howard C. Elman,et al. IFISS: A Computational Laboratory for Investigating Incompressible Flow Problems , 2014, SIAM Rev..
[33] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[34] Catherine Elizabeth Powell,et al. Preconditioning Steady-State Navier-Stokes Equations with Random Data , 2012, SIAM J. Sci. Comput..