A Low-Rank Solver for the Navier-Stokes Equations with Uncertain Viscosity

We study an iterative low-rank approximation method for the solution of the steady-state stochastic Navier--Stokes equations with uncertain viscosity. The method is based on linearization schemes using Picard and Newton iterations and stochastic finite element discretizations of the linearized problems. For computing the low-rank approximate solution, we adapt the nonlinear iterations to an inexact and low-rank variant, where the solution of the linear system at each nonlinear step is approximated by a quantity of low rank. This is achieved by using a tensor variant of the GMRES method as a solver for the linear systems. We explore the inexact low-rank nonlinear iteration with a set of benchmark problems, using a model of flow over an obstacle, under various configurations characterizing the statistical features of the uncertain viscosity, and we demonstrate its effectiveness by extensive numerical experiments.

[1]  Howard C. Elman,et al.  A Low-Rank Multigrid Method for the Stochastic Steady-State Diffusion Problem , 2016, SIAM J. Matrix Anal. Appl..

[2]  Hermann G. Matthies,et al.  Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format , 2015, SIAM/ASA J. Uncertain. Quantification.

[3]  Peter Benner,et al.  Solving Optimal Control Problems governed by Random Navier-Stokes Equations using Low-Rank Methods , 2017 .

[4]  Howard C. Elman,et al.  Block-diagonal preconditioning for spectral stochastic finite-element systems , 2008 .

[5]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[6]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[7]  Howard C. Elman,et al.  Solving the Stochastic Steady-State Diffusion Problem using , 2006 .

[8]  Hermann G. Matthies,et al.  Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats , 2014, Comput. Math. Appl..

[9]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[10]  Martin Stoll,et al.  A Low-Rank in Time Approach to PDE-Constrained Optimization , 2015, SIAM J. Sci. Comput..

[11]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[12]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[13]  Daniel Kressner,et al.  Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..

[14]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[15]  Anthony Nouy,et al.  Model Reduction Based on Proper Generalized Decomposition for the Stochastic Steady Incompressible Navier-Stokes Equations , 2014, SIAM J. Sci. Comput..

[16]  Howard C. Elman,et al.  Efficient Iterative Solvers for Stochastic Galerkin Discretizations of Log-Transformed Random Diffusion Problems , 2012, SIAM J. Sci. Comput..

[17]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[18]  Kookjin Lee,et al.  A Preconditioned Low-Rank Projection Method with a Rank-Reduction Scheme for Stochastic Partial Differential Equations , 2016, SIAM J. Sci. Comput..

[19]  Howard C. Elman,et al.  Stochastic Galerkin methods for the steady-state Navier-Stokes equations , 2015, J. Comput. Phys..

[20]  Stefan Vandewalle,et al.  Iterative Solvers for the Stochastic Finite Element Method , 2008, SIAM J. Sci. Comput..

[21]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[22]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[23]  F. Henrotte,et al.  Accelerating Non-Linear Time-Harmonic Problems by a Hybrid Picard-Newton Approach , 2002 .

[24]  Dirk Roose,et al.  An Adaptive Newton-Picard Algorithm with Subspace Iteration for Computing Periodic Solutions , 1998, SIAM J. Sci. Comput..

[25]  Roger G. Ghanem,et al.  Hierarchical Schur complement preconditioner for the stochastic Galerkin finite element methods , 2012, Numer. Linear Algebra Appl..

[26]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[27]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[28]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[29]  Peter Benner,et al.  Low-Rank Solution of Unsteady Diffusion Equations with Stochastic Coefficients , 2015, SIAM/ASA J. Uncertain. Quantification.

[30]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[31]  Hermann G. Matthies,et al.  Solving stochastic systems with low-rank tensor compression , 2012 .

[32]  Howard C. Elman,et al.  IFISS: A Computational Laboratory for Investigating Incompressible Flow Problems , 2014, SIAM Rev..

[33]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[34]  Catherine Elizabeth Powell,et al.  Preconditioning Steady-State Navier-Stokes Equations with Random Data , 2012, SIAM J. Sci. Comput..