m-order integrals and generalized Ito's formula; the case of a fractional Brownian motion with any Hurst index

Given an integer m, a probability measure ν on [0,1], a process X and a real function g, we define the m-order ν-integral having as integrator X and as integrand g(X). In the case of the fractional Brownian motion B, for any locally bounded function g, the corresponding integral vanishes for all odd indices m>1/2H and any symmetric ν. One consequence is an Ito–Stratonovich type expansion for the fractional Brownian motion with arbitrary Hurst index 01/6.

[1]  D. Feyel,et al.  On Fractional Brownian Processes , 1999 .

[2]  M. Fukushima,et al.  Dirichlet forms and symmetric Markov processes , 1994 .

[3]  Gerald Trutnau Stochastic calculus of generalized Dirichlet forms and applications to stochastic differential equations in infinite dimensions , 2000 .

[4]  P. Vallois,et al.  Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H>=1/4 , 2003 .

[5]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[6]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[7]  Hans Föllmer,et al.  Calcul d'ito sans probabilites , 1981 .

[8]  M. Yor,et al.  Sur Quelques Approximations D’integrales Stochastiques , 1977 .

[9]  P. Vallois,et al.  Ito formula forC1-functions of semimartingales , 1996 .

[10]  A. Shiryayev,et al.  Quadratic covariation and an extension of Itô's formula , 1995 .

[11]  Terry Lyons,et al.  A crossing estimate for the canonical process on a Dirichlet space and tightness result , 1988 .

[12]  Christian Bender An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter , 2003 .

[13]  Laure Coutin,et al.  Stochastic analysis, rough path analysis and fractional Brownian motions , 2002 .

[14]  Francesco Russo,et al.  The generalized covariation process and Ito formula , 1995 .

[15]  Francesco Russo,et al.  n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes , 2003 .

[16]  Skorokhod and pathwise stochastic calculus with respect to an L² process , 2000 .

[17]  Mohammed Errami,et al.  Covariation de convolution de martingales , 1998 .

[18]  L. Decreusefond,et al.  Stochastic Analysis of the Fractional Brownian Motion , 1999 .

[19]  P. Vallois,et al.  Stochastic calculus with respect to continuous finite quadratic variation processes , 2000 .

[20]  L. Young DIFFERENTIAL EQUATIONS DRIVEN BY ROUGH SIGNALS ( I ) : AN EXTENSION OF AN INEQUALITY OF , 2004 .

[21]  Wolf Jochen An Itô formula for local dirichlet processes , 1997 .

[22]  M. Zähle Integration with respect to fractal functions and stochastic calculus. I , 1998 .

[23]  Stochastic calculus for continuous additive functionals of zero energy , 1985 .

[24]  Ivan Nourdin,et al.  Approximation at First and Second Order of $m$-order Integrals of the Fractional Brownian Motion and of Certain Semimartingales , 2003 .

[25]  D. Nualart,et al.  Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H∈(0,12) , 2005 .

[26]  R. Dudley,et al.  Differentiability of Six Operators on Nonsmooth Functions and p-Variation , 1999 .

[27]  R. Lathe Phd by thesis , 1988, Nature.