m-order integrals and generalized Ito's formula; the case of a fractional Brownian motion with any Hurst index
暂无分享,去创建一个
Francesco Russo | Ivan Nourdin | Pierre Vallois | Mihai Gradinaru | P. Vallois | F. Russo | I. Nourdin | M. Gradinaru
[1] D. Feyel,et al. On Fractional Brownian Processes , 1999 .
[2] M. Fukushima,et al. Dirichlet forms and symmetric Markov processes , 1994 .
[3] Gerald Trutnau. Stochastic calculus of generalized Dirichlet forms and applications to stochastic differential equations in infinite dimensions , 2000 .
[4] P. Vallois,et al. Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H>=1/4 , 2003 .
[5] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[6] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[7] Hans Föllmer,et al. Calcul d'ito sans probabilites , 1981 .
[8] M. Yor,et al. Sur Quelques Approximations D’integrales Stochastiques , 1977 .
[9] P. Vallois,et al. Ito formula forC1-functions of semimartingales , 1996 .
[10] A. Shiryayev,et al. Quadratic covariation and an extension of Itô's formula , 1995 .
[11] Terry Lyons,et al. A crossing estimate for the canonical process on a Dirichlet space and tightness result , 1988 .
[12] Christian Bender. An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter , 2003 .
[13] Laure Coutin,et al. Stochastic analysis, rough path analysis and fractional Brownian motions , 2002 .
[14] Francesco Russo,et al. The generalized covariation process and Ito formula , 1995 .
[15] Francesco Russo,et al. n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes , 2003 .
[16] Skorokhod and pathwise stochastic calculus with respect to an L² process , 2000 .
[17] Mohammed Errami,et al. Covariation de convolution de martingales , 1998 .
[18] L. Decreusefond,et al. Stochastic Analysis of the Fractional Brownian Motion , 1999 .
[19] P. Vallois,et al. Stochastic calculus with respect to continuous finite quadratic variation processes , 2000 .
[20] L. Young. DIFFERENTIAL EQUATIONS DRIVEN BY ROUGH SIGNALS ( I ) : AN EXTENSION OF AN INEQUALITY OF , 2004 .
[21] Wolf Jochen. An Itô formula for local dirichlet processes , 1997 .
[22] M. Zähle. Integration with respect to fractal functions and stochastic calculus. I , 1998 .
[23] Stochastic calculus for continuous additive functionals of zero energy , 1985 .
[24] Ivan Nourdin,et al. Approximation at First and Second Order of $m$-order Integrals of the Fractional Brownian Motion and of Certain Semimartingales , 2003 .
[25] D. Nualart,et al. Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H∈(0,12) , 2005 .
[26] R. Dudley,et al. Differentiability of Six Operators on Nonsmooth Functions and p-Variation , 1999 .
[27] R. Lathe. Phd by thesis , 1988, Nature.