Silica Biomineralisation in Diatoms: The Model Organism Thalassiosira pseudonana

After complete genome sequencing, the diatom Thalassiosira pseudonana has become an attractive model organism for silica biomineralisation studies. Recent progress, especially with respect to intracellular silicic acid processing, as well as to the natures of the biomolecules involved in diatom cell wall formation, is described. On the one hand, considerable progress has been made with respect to silicon uptake by special proteins (SITs) from the surrounding water, as well as to the storage and processing of silicon before cell division. On the other hand, the discovery and characterisation of remarkable biomolecules such as silaffins, polyamines and—quite recently—of silacidins in the siliceous cell walls of diatoms strongly impacts the growing field of biomimetic materials synthesis.

[1]  W. Tremel,et al.  Formation of siliceous spicules in the marine demosponge Suberites domuncula , 2005, Cell and Tissue Research.

[2]  S. D. Kinrade,et al.  Silicon-29 NMR evidence of a transient hexavalent silicon complex in the diatom Navicula pelliculosa , 2002 .

[3]  D. Werner Die Kieselsäure im Stoffwechsel von Cyclotella cryptica Reimann, Lewin und Guillard , 1966, Archiv für Mikrobiologie.

[4]  M. Sumper,et al.  Biomimetic silica formation: analysis of the phosphate-induced self-assembly of polyamines. , 2005, Physical chemistry chemical physics : PCCP.

[5]  Toshiki Watanabe,et al.  A crustacean Ca2+-binding protein with a glutamate-rich sequence promotes CaCO3 crystallization. , 2004, The Biochemical journal.

[6]  D. Kaplan,et al.  Lessons from seashells: silica mineralization via protein templating. , 2004, Trends in biotechnology.

[7]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[8]  E. G. Vrieling,et al.  MONITORING RAPID VALVE FORMATION IN THE PENNATE DIATOM NAVICULA SALINARUM (BACILLARIOPHYCEAE) 1 , 2005 .

[9]  F. Azam,et al.  Role of silicon in diatom metabolism , 1974, Archives of Microbiology.

[10]  A. Veis,et al.  Electrostatic Interactions Lead to the Formation of Asymmetric Collagen-Phosphophoryn Aggregates , 2003, Connective tissue research.

[11]  N. Kröger,et al.  Silica-precipitating Peptides from Diatoms , 2001, The Journal of Biological Chemistry.

[12]  N. Kröger,et al.  Species-specific polyamines from diatoms control silica morphology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Wright,et al.  Amine-terminated dendrimers as biomimetic templates for silica nanosphere formation. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[14]  Robert F. Shepherd,et al.  Biomimetic silicification of 3D polyamine-rich scaffolds assembled by direct ink writing. , 2006, Soft matter.

[15]  A. George,et al.  Matrix Macromolecules in Hard Tissues Control the Nucleation and Hierarchical Assembly of Hydroxyapatite* , 2007, Journal of Biological Chemistry.

[16]  M. Sumper Biomimetic patterning of silica by long-chain polyamines. , 2004, Angewandte Chemie.

[17]  C. Perry,et al.  Putrescine homologues control silica morphogenesis by electrostatic interactions and the hydrophobic effect. , 2005, Chemical communications.

[18]  S. Lorenz,et al.  Biomimetic control of size in the polyamine-directed formation of silica nanospheres. , 2003, Angewandte Chemie.

[19]  Jian-Jun Yuan,et al.  Synthesis of poly(ethyleneimine)s-silica hybrid particles with complex shapes and hierarchical structures. , 2005, Chemical communications.

[20]  H. Menzel,et al.  Chemical properties of polyamines with relevance to the biomineralization of silica. , 2003, Chemical communications.

[21]  Hong‐Ping Lin,et al.  Synthesis of mesoporous silica helical fibers using a catanionic-neutral ternary surfactant in a highly dilute silica solution: biomimetic silicification. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[22]  H. Pankratz,et al.  POST MITOTIC FINE STRUCTURE OF GOMPHONEMA PARVULUM. , 1964, Journal of ultrastructure research.

[23]  M. Sumper,et al.  Biomimetic synthesis of silica nanospheres depends on the aggregation and phase separation of polyamines in aqueous solution , 2004 .

[24]  T. Coradin,et al.  Spectroscopic characterization of biogenic silica , 2003 .

[25]  C. Bauer,et al.  Silica particle formation in confined environments via bioinspired polyamine catalysis at near-neutral pH. , 2007, Small.

[26]  T. Coradin,et al.  Effect of some amino acids and peptides on silicic acid polymerization. , 2001, Colloids and surfaces. B, Biointerfaces.

[27]  Roberts,et al.  High Resolution Solid-State NMR of Silicates and Zeolites , 2022 .

[28]  G. Stucky,et al.  Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Schmid,et al.  Wall morphogenesis in diatoms: Deposition of silica by cytoplasmic vesicles , 1979, Protoplasma.

[30]  W. Tremel,et al.  Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation. , 2007, Journal of structural biology.

[31]  G. Lehmann,et al.  A code for lysine modifications of a silica biomineralizing silaffin protein. , 2007, Angewandte Chemie.

[32]  M. Hildebrand,et al.  Analysis of Thalassiosira pseudonana Silicon Transporters Indicates Distinct Regulatory Levels and Transport Activity through the Cell Cycle , 2006, Eukaryotic Cell.

[33]  P. Lopez,et al.  Silicon--a central metabolite for diatom growth and morphogenesis. , 2003, Progress in molecular and subcellular biology.

[34]  R. Sakai,et al.  Long‐Chain Polyamines (LCPAs) from Marine Sponge: Possible Implication in Spicule Formation , 2007, Chembiochem : a European journal of chemical biology.

[35]  E. A. Williams,et al.  Silicon-29 NMR Spectroscopy , 1979 .

[36]  M. Heidelberger,et al.  THE PRECIPITIN REACTION BETWEEN TYPE III PNEUMOCOCCUS POLYSACCHARIDE AND HOMOLOGOUS ANTIBODY , 1935, The Journal of experimental medicine.

[37]  M. Brzezinski,et al.  Sensitivity considerations in polarization transfer and filtering using dipole-dipole couplings: implications for biomineral systems. , 2006, Solid state nuclear magnetic resonance.

[38]  M. Doktycz,et al.  Surface patterning of silica nanostructures using bio-inspired templates and directed synthesis. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[39]  Arnaud Hecker,et al.  Phosphorylation of serine residues is fundamental for the calcium‐binding ability of Orchestin, a soluble matrix protein from crustacean calcium storage structures , 2003, FEBS letters.

[40]  M. Fromm,et al.  Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Brzezinski,et al.  THE CHEMICAL FORM OF DISSOLVED SI TAKEN UP BY MARINE DIATOMS , 1999 .

[42]  Nicolas Bremond,et al.  New tools for labeling silica in living diatoms. , 2008, The New phytologist.

[43]  Eileen J. Cox,et al.  VARIATION IN PATTERNS OF VALVE MORPHOGENESIS BETWEEN REPRESENTATIVES OF SIX BIRAPHID DIATOM GENERA (BACILLARIOPHYCEAE) , 1999 .

[44]  N. Kröger,et al.  Polycationic peptides from diatom biosilica that direct silica nanosphere formation. , 1999, Science.

[45]  Paul Mulvaney,et al.  NANOSTRUCTURE OF THE DIATOM FRUSTULE AS REVEALED BY ATOMIC FORCE AND SCANNING ELECTRON MICROSCOPY , 2001 .

[46]  M. Sumper,et al.  Silacidins: highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro. , 2008, Angewandte Chemie.

[47]  H. Ogoshi,et al.  Silicic Acid Polymerization Catalyzed by Amines and Polyamines , 1998 .

[48]  N. Kröger,et al.  Silica formation in diatoms: the function of long-chain polyamines and silaffins , 2004 .

[49]  Egon Matijević,et al.  Chemistry of silica , 1980 .

[50]  Nicole Poulsen,et al.  Biosilica formation in diatoms: Characterization of native silaffin-2 and its role in silica morphogenesis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G. Stucky,et al.  Micrometer-sized spherical assemblies of polypeptides and small molecules by acid-base chemistry. , 2004, Angewandte Chemie.

[52]  W. Tremel,et al.  Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. , 2007, Biomaterials.

[53]  Mark Hildebrand,et al.  SILICON METABOLISM IN DIATOMS: IMPLICATIONS FOR GROWTH  , 2000 .

[54]  G. Lehmann,et al.  Silica Pattern Formation in Diatoms: Species‐Specific Polyamine Biosynthesis , 2006, Chembiochem : a European journal of chemical biology.

[55]  Andrew J. Alverson,et al.  COMPARATIVE SEQUENCE ANALYSIS OF DIATOM SILICON TRANSPORTERS: TOWARD A MECHANISTIC MODEL OF SILICON TRANSPORT 1 , 2006 .

[56]  A. Grossman,et al.  Stable nuclear transformation of the diatomPhaeodactylum tricornutum , 1996, Molecular and General Genetics MGG.

[57]  S. Weiner,et al.  Choosing the Crystallization Path Less Traveled , 2005, Science.

[58]  Manfred Sumper Prof. Biomimetic Patterning of Silica by Long-Chain Polyamines† , 2004 .

[59]  G. Lehmann,et al.  Biomineralization in diatoms: Characterization of novel polyamines associated with silica , 2005, FEBS letters.

[60]  M. Sumper,et al.  Silicon uptake and metabolism of the marine diatom Thalassiosira pseudonana: Solid-state 29Si NMR and fluorescence microscopic studies. , 2008, Journal of structural biology.

[61]  M. Sumper,et al.  A Phase Separation Model for the Nanopatterning of Diatom Biosilica , 2002, Science.

[62]  T. Coradin,et al.  Interactions of amino-containing peptides with sodium silicate and colloidal silica: A biomimetic approach of silicification , 2002 .

[63]  C. Bauer,et al.  Dependence of amine-accelerated silicate condensation on amine structure , 2007 .

[64]  E. Baeuerlein Biomineralization : from biology to biotechnology and medical application , 2004 .

[65]  S. Lorenz,et al.  Self-Assembly of Highly Phosphorylated Silaffins and Their Function in Biosilica Morphogenesis , 2002, Science.

[66]  N. Kröger,et al.  Solid-state 29Si MAS NMR studies of diatoms: structural characterization of biosilica deposits , 2003, Analytical and bioanalytical chemistry.

[67]  G. Stucky,et al.  Silicatein α: Cathepsin L-like protein in sponge biosilica , 1998 .

[68]  G. Pohnert Biomineralization in diatoms mediated through peptide- and polyamine-assisted condensation of silica. , 2002, Angewandte Chemie.

[69]  M. Sumper,et al.  Learning from Diatoms: Nature's Tools for the Production of Nanostructured Silica , 2006 .

[70]  M. Hildebrand,et al.  Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms , 1998, Molecular and General Genetics MGG.

[71]  Nicole Poulsen,et al.  MOLECULAR GENETIC MANIPULATION OF THE DIATOM THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE) 1 , 2006 .

[72]  P. Simonian,et al.  Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. , 1993, The Journal of biological chemistry.

[73]  David G. Mann,et al.  Biodiversity, biogeography and conservation of diatoms , 1996 .

[74]  Mark Hildebrand,et al.  A gene family of silicon transporters , 1997, Nature.

[75]  W. Darley,et al.  [7] Synchronized cultures: diatoms , 1971 .

[76]  A. Veis,et al.  Phosphophoryns—major noncollagenous proteins of rat incisor dentin , 1978, Calcified Tissue Research.

[77]  S. Chisholm,et al.  Silicic acid incorporation in marine diatoms on light:dark cycles: Use as an assay for phased cell division 1 , 1978 .

[78]  D. M. Nelson,et al.  Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation , 1995 .

[79]  J. Evans,et al.  Phosphophoryn, an “acidic” biomineralization regulatory protein: Conformational folding in the presence of Cd(II) , 1994, Biopolymers.

[80]  Nicole Poulsen,et al.  Silica Morphogenesis by Alternative Processing of Silaffins in the Diatom Thalassiosira pseudonana* , 2004, Journal of Biological Chemistry.

[81]  A. Cavalier,et al.  Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. , 2007, Nature materials.

[82]  Siddharth V. Patwardhan,et al.  Silicification and biosilicification , 2002 .