High-Power, Low-Noise 1.5-μm Slab-Coupled Optical Waveguide (SCOW) Emitters: Physics, Devices, and Applications

We review the development of a new class of high-power, edge-emitting, semiconductor optical gain medium based on the slab-coupled optical waveguide (SCOW) concept. We restrict the scope to InP-based devices incorporating either InGaAsP or InGaAlAs quantum-well active regions and operating in the 1.5-μm-wavelength region. Key properties of the SCOW gain medium include large transverse optical mode dimensions (>;5 × 5 μm), ultralow optical confinement factor (Γ ~ 0.25-1%), and small internal loss coefficient (αi ~ 0.5 cm-1). These properties have enabled the realization of 1) packaged Watt-class semiconductor optical amplifiers (SOAs) having low-noise figure (4-5 dB), 2) monolithic passively mode-locked lasers generating 0.25-W average output power, 3) external-cavity fiber-ring actively mode-locked lasers exhibiting residual timing jitter of <;10 fs (1Hz to Nyquist), and 4) single-frequency external-cavity lasers producing 0.37-W output power with Gaussian (Lorentzian) linewidth of 35 kHz (1.75 kHz) and relative intensity noise (RIN) <; -160 dB/Hz from 200 kHz to 10 GHz. We provide an overview the SCOW design principles, describe simulation results that quantify the performance limitations due to confinement factor, linear optical loss mechanisms, and nonlinear two-photon absorption (TPA) loss, and review the SCOW devices that have been demonstrated and applications that these devices are expected to enable.

[1]  J. Simon,et al.  GaInAsP semiconductor laser amplifiers for single-mode fiber communications , 1987 .

[2]  T. W. Berg,et al.  Saturation and noise properties of quantum-dot optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[3]  C. Burrus,et al.  Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for high-power applications , 1993, IEEE Photonics Technology Letters.

[4]  Leo J. Missaggia,et al.  High-power strained-layer InGaAs/AlGaAs tapered traveling wave amplifier , 1992 .

[5]  A. Napoleone,et al.  High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions , 1996, IEEE Photonics Technology Letters.

[6]  N. Dutta,et al.  Semiconductor Lasers , 1993 .

[7]  Robin K. Huang,et al.  250 mW, 1.5 microm monolithic passively mode-locked slab-coupled optical waveguide laser. , 2006, Optics letters.

[8]  John C. Connolly,et al.  8 W continuous wave front‐facet power from broad‐waveguide Al‐free 980 nm diode lasers , 1996 .

[9]  G. Eisenstein,et al.  Temperature dependent loss and overflow effects in quantum well lasers , 1994, IEEE Photonics Technology Letters.

[10]  Mitsuru Sugawara,et al.  Quantum-dot semiconductor optical amplifiers , 2002, SPIE/OSA/IEEE Asia Communications and Photonics.

[11]  Y. Arakawa,et al.  An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots , 2005, IEEE Photonics Technology Letters.

[12]  P. Juodawlkis,et al.  1.5-/spl mu/m InGaAsP-InP slab-coupled optical waveguide lasers , 2005, IEEE Photonics Technology Letters.

[13]  M. O'Mahony Semiconductor laser optical amplifiers for use in future fiber systems , 1988 .

[14]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[15]  P. Delfyett,et al.  Low-noise, low repetition rate, semiconductor-based mode-locked laser source suitable for high bandwidth photonic analog-digital conversion. , 2010, Applied optics.

[16]  Leo W. Hollberg,et al.  Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals , 2003 .

[17]  Seoung-Hwan Park,et al.  Theory and experiment of In/sub 1-x/Ga/sub x/As/sub y/P/sub 1-y/ and In/sub 1-x-y/Ga/sub x/Al/sub y/As long-wavelength strained quantum-well lasers , 1999 .

[18]  Faisal R. Ahmad,et al.  Fundamental and Subharmonic Hybrid Mode-Locking of a High-Power (220 mW) Monolithic Semiconductor Laser , 2008, IEEE Photonics Technology Letters.

[19]  Stephen R. Forrest,et al.  1.5 /spl mu/m wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power , 1996 .

[20]  Iulian B. Petrescu-Prahova,et al.  Design of a 1W, single filament laser diode , 1994 .

[21]  Ming C. Wu,et al.  Monolithic colliding-pulse mode-locked quantum-well lasers , 1991 .

[22]  P. Delfyett,et al.  Intracavity dispersion effect on timing jitter of ultralow noise mode-locked semiconductor based external-cavity laser. , 2009, Optics letters.

[23]  Paul W. Juodawlkis,et al.  High-power ultralow-noise semiconductor external cavity lasers based on low-confinement optical waveguide gain media , 2010, OPTO.

[24]  P. Juodawlkis,et al.  High-power 1.5-/spl mu/m InGaAsP-InP slab-coupled optical waveguide amplifier , 2005, IEEE Photonics Technology Letters.

[25]  Frederick J. O'Donnell,et al.  Semiconductor laser sources for externally modulated microwave analog links , 1997 .

[26]  S. Gee,et al.  Self-Stabilization of an Actively Mode-Locked Semiconductor-Based Fiber-Ring Laser for Ultralow Jitter , 2007, IEEE Photonics Technology Letters.

[27]  P. Juodawlkis,et al.  Narrow-linewidth, high-power 1556-nm slab-coupled optical waveguide external-cavity laser , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[29]  David G. Mehuys,et al.  2.0 W CW, diffraction-limited tapered amplifier with diode injection , 1992 .

[30]  John E. Bowers,et al.  High speed semiconductor laser design and performance , 1987 .

[31]  P. Juodawlkis,et al.  Packaged 1.5-$\mu$ m Quantum-Well SOA With 0.8-W Output Power and 5.5-dB Noise Figure , 2009, IEEE Photonics Technology Letters.

[33]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[34]  P. Juodawlkis,et al.  Ultralow-noise packaged 1.55-µm semiconductor external-cavity laser with 0.37-W output power , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[35]  E. A. J. Marcatili,et al.  Slab-coupled waveguides , 1974 .

[36]  Hiromi Oohashi,et al.  Study on the dominant mechanisms for the temperature sensitivity of threshold current in 1.3-/spl mu/m InP-based strained-layer quantum-well lasers , 1996 .

[37]  J K Sahu,et al.  High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source. , 2005, Optics letters.

[38]  Faisal R. Ahmad,et al.  Passively Mode-Locked High-Power (210 mW) Semiconductor Lasers at 1.55-$\mu$m Wavelength , 2008, IEEE Photonics Technology Letters.

[39]  M. Kats,et al.  Energy limits imposed by two-photon absorption for pulse amplification in high-power semiconductor optical amplifiers. , 2008, Optics letters.

[40]  P. Juodawlkis,et al.  High power 1.5-μm InGaAsP/InP Colliding-Pulse Mode-Locked Slab-Coupled Optical Waveguide Laser , 2006, LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[41]  F Quinlan,et al.  Ultralow-noise mode-locked optical pulse trains from an external cavity laser based on a slab coupled optical waveguide amplifier (SCOWA). , 2005, Optics letters.

[42]  Kenichi Iga,et al.  Noise suppression and intensity modulation using gain-saturated semiconductor optical amplifier, , 2000 .

[43]  Peter J. Delfyett,et al.  Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources , 2009 .

[44]  Peter Michael Smowton,et al.  The differential efficiency of quantum well lasers , 1996 .

[45]  M. Connelly Wideband semiconductor optical amplifier steady-state numerical model , 2001 .

[46]  E. Ippen,et al.  Continuous-wave two-photon absorption in a Watt-class semiconductor optical amplifier. , 2008, Optics express.

[47]  Noise figure of a packaged, high-power slab-coupled optical waveguide amplifier (SCOWA) , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[48]  Stephen R. Forrest,et al.  Photoluminescence study of excess carrier spillover in 1.3 μm wavelength strained multi‐quantum‐well InGaAsP/InP laser structures , 1995 .

[49]  C.T. Harris,et al.  High-power nearly diffraction-limited AlGaAs-InGaAs semiconductor slab-coupled optical waveguide laser , 2003, IEEE Photonics Technology Letters.

[50]  A. Kuramata,et al.  A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure , 2005, IEEE Photonics Technology Letters.

[51]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[52]  Mario Dagenais,et al.  High power C-band semiconductor booster optical amplifier , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[53]  Robin K. Huang,et al.  AlGaAs-InGaAs slab-coupled optical waveguide lasers , 2003 .

[54]  P. Juodawlkis,et al.  Improving the efficiency of high-power semiconductor optical amplifiers , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[55]  N. A. Olsson Semiconductor optical amplifiers , 1992 .

[56]  P. Juodawlkis,et al.  Gain-Power Trade-Off in Low-Confinement Semiconductor Optical Amplifiers , 2007, International Conference on Numerical Simulation of Optoelectronic Devices.

[57]  A. Napoleone,et al.  Slab-coupled 1.3-μm semiconductor laser with single-spatial large-diameter mode , 2002, IEEE Photonics Technology Letters.

[58]  Larry A. Coldren,et al.  Demonstration of high saturation power/high gain SOAs using quantum well intermixing based integration platform , 2005 .

[59]  A. Pietrzak,et al.  55 W peak power from 1100 nm wavelength 60 µm broad-area laser diodes enabled by reduced carrier accumulation in the waveguide , 2009 .

[60]  Rajeev J Ram,et al.  Noise Figure of Watt-Class Ultralow-Confinement Semiconductor Optical Amplifiers , 2011, IEEE Journal of Quantum Electronics.

[61]  P. Juodawlkis,et al.  Slab-coupled optical waveguide photodiode , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[62]  Nathan R Newbury,et al.  Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. , 2004, Optics letters.