The overlooked potential of Generalized Linear Models in astronomy-II: Gamma regression and photometric redshifts
暂无分享,去创建一个
A. Krone-Martins | E. E. O. Ishida | R. S. de Souza | J. Elliott | E. Cameron | J. Hilbe | E. Ishida | A. Krone-Martins | J. Hilbe | E. Cameron | J. Elliott | Rafael S. de Souza | Alberto Krone-Martins | Ewan Cameron | Emille E. O. Ishida | Joseph M. Hilbe | R. S. Souza | A. Krone-Martins
[1] Emille E. O. Ishida,et al. Hubble parameter reconstruction from a principal component analysis: minimizing the bias , 2010, 1012.5335.
[2] Serhat Guven,et al. GLM Basic Modeling : Avoiding Common pi ~ Calls , 2007 .
[3] D. Brown,et al. Models in biology : mathematics, statistics and computing , 1995 .
[4] Y. Wadadekar. Estimating Photometric Redshifts Using Support Vector Machines , 2004, astro-ph/0412005.
[5] C. Tao,et al. A metric space for Type Ia supernova spectra , 2014, 1612.07104.
[6] A. Szalay,et al. Slicing Through Multicolor Space: Galaxy Redshifts from Broadband Photometry , 1995, astro-ph/9508100.
[7] R. Nichol,et al. Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.
[8] Donald W. Sweeney,et al. LSST Science Book, Version 2.0 , 2009, 0912.0201.
[9] Ofer Lahav,et al. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .
[10] Yi Ma,et al. Robust principal component analysis? , 2009, JACM.
[11] I. Jolliffe. Principal Component Analysis , 2002 .
[12] A. Krone-Martins,et al. UPMASK: unsupervised photometric membership assignment in stellar clusters , 2013, 1309.4471.
[13] Eric R. Ziegel,et al. An Introduction to Generalized Linear Models , 2002, Technometrics.
[14] P. McCullagh,et al. Generalized Linear Models , 1984 .
[15] D. A. García-Hernández,et al. THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.
[16] D. Gerdes,et al. PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.
[17] R. S. de Souza,et al. The overlooked potential of Generalized Linear Models in astronomy, I: Binomial regression , 2014, Astron. Comput..
[18] J. Hardin,et al. Generalized Linear Models and Extensions, Third Edition , 2012 .
[19] R. Souza,et al. Robust PCA and MIC statistics of baryons in early minihaloes , 2013, 1308.6009.
[20] Christopher S. Oehmen,et al. SVM-HUSTLE - an iterative semi-supervised machine learning approach for pairwise protein remote homology detection , 2008, Bioinform..
[21] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[22] Joseph M. Hilbe,et al. Modeling Count Data , 2014, International Encyclopedia of Statistical Science.
[23] J. Lindsey,et al. A review of some extensions to generalized linear models. , 1999, Statistics in medicine.
[24] C. Baltay,et al. Wide-Field InfraRed Survey Telescope WFIRST Final Report , 2012 .
[25] B. Garilli,et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.
[26] John A. Nelder,et al. The analysis of randomized experiments with orthogonal block structure. II. Treatment structure and the general analysis of variance , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[27] Yanxia Zhang,et al. Review of techniques for photometric redshift estimation , 2012, Other Conferences.
[28] E. E. O. Ishida,et al. Probing cosmic star formation up to z= 9.4 with gamma-ray bursts: Probing SFH with GRBs , 2011 .
[29] Gillian Z. Heller,et al. Generalized Linear Models for Insurance Data , 2008 .
[30] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[31] Michigan.,et al. Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.
[32] Christopher J. Conselice. The fundamental properties of galaxies and a new galaxy classification system , 2006 .
[33] Alex Alves Freitas,et al. Estimating Photometric Redshifts Using Genetic Algorithms , 2006, SGAI Conf..
[34] Ofer Lahav,et al. Estimating photometric redshifts with ANNs 1 20 ? ? , .
[35] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[36] J. Gunn,et al. The Sloan Digital Sky Survey , 1994, astro-ph/9412080.
[37] D. Rubinfeld,et al. Econometric models and economic forecasts , 2002 .
[38] E. Ishida,et al. Kernel PCA for Type Ia supernovae photometric classification , 2012, 1201.6676.
[39] E. Ishida,et al. The first analytical expression to estimate photometric redshifts suggested by a machine , 2013, 1308.4145.
[40] France,et al. Photometric Redshifts based on standard SED fitting procedures , 2000 .
[41] R. J. Brunner,et al. Exhausting the Information: Novel Bayesian Combination of Photometric Redshift PDFs , 2014, 1403.0044.
[42] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[43] Joseph Hilbe,et al. CosmoPhotoz: Photometric redshift estimation using generalized linear models , 2014 .
[44] R. Rigby,et al. Generalized Additive Models for Location Scale and Shape (GAMLSS) in R , 2007 .
[45] Claudio Dalla Vecchia,et al. The correlation structure of dark matter halo properties , 2011, 1103.5467.
[46] Mark Hebblewhite,et al. The importance of observation versus process error in analyses of global ungulate populations , 2013, Scientific Reports.
[47] Manda Banerji,et al. A comparison of six photometric redshift methods applied to 1.5 million luminous red galaxies , 2008, 0812.3831.
[48] A. Amara,et al. Euclid Imaging Consortium Science Book , 2010 .
[49] E. E. O. Ishida,et al. Probing cosmic star formation up to z = 9.4 with GRBs , 2011, 1106.1745.
[50] J. Hardin,et al. Generalized Linear Models and Extensions , 2001 .