A generalized structure-preserving doubling algorithm for generalized discrete-time algebraic Riccati equations

In Chu et al. (2004), an efficient structure-preserving doubling algorithm (SDA) was proposed for the solution of discrete-time algebraic Riccati equations (DAREs). In this paper, we generalize the SDA to the G-SDA, for the generalized DARE: E T XE = A T XA − (A T XB…+C TS )(R + B T XB)−1(B T XA + S TC ) + C T QC. Using Cayley transformation twice, we transform the generalized DARE to a DARE in a standard symplectic form without any explicit inversions of (possibly ill-conditioned) R and E. The SDA can then be applied. Selected numerical examples illustrate that the G-SDA is efficient, out-performing other algorithms.

[1]  Peter Benner,et al.  Evaluating products of matrix pencils and collapsing matrix products , 2001, Numer. Linear Algebra Appl..

[2]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[3]  T. K. Nguyen Numerical solution of discrete-time algebraic Riccati equation , 1999 .

[4]  Morishige Kimura,et al.  Convergence of the doubling algorithm for the discrete-time algebraic Riccati equation , 1988 .

[5]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.

[6]  J. Demmel,et al.  An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems , 1997 .

[7]  Wen-Wei Lin,et al.  Convergence Analysis of Structure-Preserving Doubling Algorithms for Riccati-Type Matrix Equations , 2006, SIAM J. Matrix Anal. Appl..

[8]  Alan J. Laub,et al.  A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case , 1998 .

[9]  B. O. Anderson Second-order convergent algorithms for the steady-state Riccati equation , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[10]  Anders Lindquist,et al.  Computational and combinatorial methods in systems theory , 1986 .

[11]  Alan J. Laub,et al.  A Collection of Benchmark Examples for the Numerical Solution of Algebraic Riccati Equations II: Dis , 1995 .

[12]  Hung-Yuan Fan,et al.  Structure-Preserving Algorithms for Periodic Discrete-Time Algebraic Riccati Equations , 2004 .

[13]  M. S. Bazaraa,et al.  Nonlinear Programming , 1979 .

[14]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[15]  W.-W. Lin,et al.  A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations , 2004 .

[16]  Rafael Mayo,et al.  Parallel Algorithms for LQ Optimal Control of Discrete-Time Periodic Linear Systems , 2002, J. Parallel Distributed Comput..

[17]  A. Laub Invariant Subspace Methods for the Numerical Solution of Riccati Equations , 1991 .

[18]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[19]  Volker Mehrmann,et al.  Regularization of Descriptor Systems by Derivative and Proportional State Feedback , 1992, SIAM J. Matrix Anal. Appl..

[20]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[21]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .