Boundary element based multiresolution shape optimisation in electrostatics

We consider the shape optimisation of high-voltage devices subject to electrostatic field equations by combining fast boundary elements with multiresolution subdivision surfaces. The geometry of the domain is described with subdivision surfaces and different resolutions of the same geometry are used for optimisation and analysis. The primal and adjoint problems are discretised with the boundary element method using a sufficiently fine control mesh. For shape optimisation the geometry is updated starting from the coarsest control mesh with increasingly finer control meshes. The multiresolution approach effectively prevents the appearance of non-physical geometry oscillations in the optimised shapes. Moreover, there is no need for mesh regeneration or smoothing during the optimisation due to the absence of a volume mesh. We present several numerical experiments and one industrial application to demonstrate the robustness and versatility of the developed approach.

[1]  S. Rjasanow,et al.  The Fast Solution of Boundary Integral Equations (Mathematical and Analytical Techniques with Applications to Engineering) , 2007 .

[2]  R. Haftka,et al.  Structural shape optimization - A survey , 1985 .

[3]  M. C. Delfour,et al.  Shapes and Geometries - Metrics, Analysis, Differential Calculus, and Optimization, Second Edition , 2011, Advances in design and control.

[4]  Jos Stam,et al.  Evaluation of Loop Subdivision Surfaces , 2010 .

[5]  W. Rundell,et al.  Iterative methods for the reconstruction of an inverse potential problem , 1996 .

[6]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[7]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[8]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[9]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[10]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[11]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[12]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[13]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[14]  Mario Bebendorf,et al.  Adaptive cross approximation of tensors arising in the discretization of boundary integral operator shape derivatives , 2013 .

[15]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[16]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[17]  R. Haftka,et al.  Structural shape optimization — a survey , 1986 .

[18]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[19]  Ronald Maier,et al.  Integrated Modeling , 2011, Encyclopedia of Knowledge Management.

[20]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[21]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[22]  Fehmi Cirak,et al.  Shape optimisation with multiresolution subdivision surfaces and immersed finite elements , 2015, ArXiv.

[23]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[24]  Petra Pustejovská,et al.  Existence Analysis for a Model Describing Flow of an Incompressible Chemically Reacting Non-Newtonian Fluid , 2014, SIAM J. Math. Anal..

[25]  Ekkehard Ramm,et al.  Efficient modeling in shape optimal design , 1991 .

[26]  Marc Bonnet,et al.  Topological sensitivity and FMM-accelerated BEM applied to 3D acoustic inverse scattering , 2008 .

[27]  M. Flucher,et al.  Bernoulli's free-boundary problem, qualitative theory and numerical approximation. , 1997 .

[28]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[29]  Kazufumi Ito,et al.  On the shape derivative for problems of Bernoulli type , 2009 .

[30]  Alfio Borzì,et al.  Multigrid Shape Optimization Governed by Elliptic PDEs , 2013, SIAM J. Control. Optim..

[31]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[32]  Olaf Steinbach,et al.  The fast multipole method for the symmetric boundary integral formulation , 2006 .

[33]  S. Rjasanow,et al.  The Fast Solution of Boundary Integral Equations , 2007 .

[34]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[35]  Fehmi Cirak,et al.  Subdivision shells with exact boundary control and non‐manifold geometry , 2011 .

[36]  Z. Andjelic,et al.  Application of the 3D boundary element method in the design of EHV GIS components , 1998 .

[37]  Ulrich Langer,et al.  Workshop on Fast Boundary Element Methods in Industrial Applications , 2003 .

[38]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[39]  J. Kuffel,et al.  High Voltage Engineering: Fundamentals , 1984 .

[40]  Martin Flucher,et al.  Bernoulli’s Free-boundary Problem , 1999 .

[41]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[42]  W. S. Venturini Boundary Integral Equations , 1983 .

[43]  Helmut Harbrecht,et al.  Tracking Neumann Data for Stationary Free Boundary Problems , 2009, SIAM J. Control. Optim..

[44]  Helmut Harbrecht,et al.  Fast wavelet BEM for 3d electromagnetic shaping , 2005 .

[45]  Krister Svanberg,et al.  A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..

[46]  D. Griffiths Introduction to Electrodynamics , 2017 .