AUGMENTED LAGRANGEAN RELAXATIONS IN GENERAL MIXED INTEGER PROGRAMMING

Abstract A new relaxation is presented for the general mixed integer programing problem. It is proved that this relaxation is always at least as good, end in one demonstrated case better, than some other known relaxations. Various aspects of the implementation of the relaxation in a branch-and-bound algorithm are discussed. Numerical examples are given to demonstrate the feasibility of the approach.

[1]  G. Nemhauser,et al.  Integer Programming , 2020 .

[2]  Peter L. Hammer,et al.  Boolean Methods in Operations Research and Related Areas , 1968 .

[3]  Philip Wolfe,et al.  Validation of subgradient optimization , 1974, Math. Program..

[4]  A. M. Geoffrion,et al.  Integer Programming Algorithms: A Framework and State-of-the-Art Survey , 1972 .

[5]  Hamdy A. Taha,et al.  A Balasian-Based Algorithm for Zero-One Polynomial Programming , 1972 .

[6]  M. Fisher,et al.  Constructive Duality in Integer Programming , 1974 .

[7]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[8]  Ta Huu Phuong Solution of Integer Programs with a Quadratic Objective Function , 1976, JACM.

[9]  D. Bertsekas On Penalty and Multiplier Methods for Constrained Minimization , 1976 .

[10]  P. Camerini,et al.  On improving relaxation methods by modified gradient techniques , 1975 .

[11]  S. C. Agrawal On mixed integer quadratic programs , 1974 .

[12]  Mokhtar S. Bazaraa,et al.  A Cutting-Plane Algorithm for the Quadratic Set-Covering Problem , 1975, Oper. Res..

[13]  Gary R. Reeves Global Minimization in Nonconvex All-Quadratic Programming , 1975 .

[14]  Hamdy A. Taha,et al.  Integer Programming: Theory, Applications, and Computations , 1975 .

[15]  C. Lemaréchal An extension of davidon methods to non differentiable problems , 1975 .

[16]  R. Rockafellar Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .

[17]  W. D. Northup,et al.  USING DUALITY TO SOLVE DISCRETE OPTIMIZATION PROBLEMS: THEORY AND COMPUTATIONAL EXPERIENCE* , 1975 .

[18]  D. Bertsekas,et al.  A DESCENT NUMERICAL METHOD FOR OPTIMIZATION PROBLEMS WITH NONDIFFERENTIABLE COST FUNCTIONALS , 1973 .

[19]  P. Wolfe Note on a method of conjugate subgradients for minimizing nondifferentiable functions , 1974 .

[20]  Ein algorithmus zur lösung gemisehtganzzahliger, konvexer optimierungsprobleme , 1976 .