Incorporation of polar Mellin transform in a hybrid optoelectronic correlator for scale and rotation invariant target recognition.

In this paper, we show that our proposed hybrid optoelectronic correlator (HOC), which correlates images using spatial light modulators (SLMs), detectors, and field-programmable gate arrays (FPGAs), is capable of detecting objects in a scale and rotation invariant manner, along with the shift invariance feature, by incorporating polar Mellin transform (PMT). For realistic images, we cut out a small circle at the center of the Fourier transform domain, as required for PMT, and illustrate how this process corresponds to correlating images with real and imaginary parts. Furthermore, we show how to carry out shift, rotation, and scale invariant detection of multiple matching objects simultaneously, a process previously thought to be incompatible with PMT-based correlators. We present results of numerical simulations to validate the concepts.

[1]  J Shamir,et al.  Scale Invariant Pattern Recognition with Logarithmic Radial Harmonic Filters , 2022 .

[2]  Ehud Rivlin,et al.  Using Fourier/Mellin-based correlators and their fractional versions in navigational tasks , 2002, Pattern Recognit..

[3]  M. S. Shahriar,et al.  Shift-invariant real-time edge-enhanced VanderLugt correlator using video-rate compatible photorefractive polymer , 2006 .

[4]  H. H. Arsenault,et al.  Rotation and scale invariance with polar and log-polar coordinate transformations , 1994 .

[5]  J García,et al.  Rotation-invariant optical recognition of three-dimensional objects. , 2000, Applied optics.

[6]  Ingemar J. Cox,et al.  Rotation, scale, and translation resilient watermarking for images , 2001, IEEE Trans. Image Process..

[7]  John T. Shen,et al.  Superparallel holographic correlator for ultrafast database searches. , 2003, Optics letters.

[8]  A. B. Vander Lugt,et al.  Signal detection by complex spatial filtering , 1964, IEEE Trans. Inf. Theory.

[9]  New optical transform for pattern recognition , 1977 .

[10]  M. S. Shahriar,et al.  ULTRA-HIGH DENSITY OPTICAL DATA STORAGE , 1998 .

[11]  Charles L. Woods,et al.  Photorefractive two-beam coupling nonlinear joint transform correlator , 1994 .

[12]  B. Javidi,et al.  Joint transform image correlation using a binary spatial light modulator at the Fourier plane. , 1988, Applied optics.

[13]  D. Casasent,et al.  SCALE INVARIANT OPTICAL CORRELATION USING MELLIN TRANSFORMS , 1976 .

[14]  B Javidi,et al.  Multiple-object detection with a chirp-encoded joint transform correlator. , 1993, Applied optics.

[15]  Renu Tripathi,et al.  Hybrid optoelectronic correlator architecture for shift-invariant target recognition. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  K. Matsuda,et al.  Joint Transform Correlator Using a Phase Only Spatial Light Modulator , 1990 .

[17]  M. S. Shahriar,et al.  Angular Directivity of Diffracted Wave in Bragg- Mismatched Readout of Volume Holographic Gratings , 2007 .

[18]  M.S. Shahriar,et al.  Shift-invariant real-time edge-enhanced VanderLugt correlator using video-rate compatible photorefractive polymer , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[19]  D. Casasent,et al.  New optical transforms for pattern recognition , 1977, Proceedings of the IEEE.

[20]  Alexander Heifetz,et al.  Translation-invariant object recognition system using an optical correlator and a super- parallel holographic random access memory , 2006 .

[21]  Aydin Alatan,et al.  Rotation, scale and translation invariant automatic target recognition based on Fourier-Mellin transform and bispectrum for satellite imagery , 2010, 2010 IEEE 18th Signal Processing and Communications Applications Conference.

[22]  John T. Shen,et al.  Shared-hardware alternating operation of a superparallel holographic optical correlator and a superparallel holographic RAM , 2004, SPIE OPTO.

[23]  D. Casasent,et al.  Position, rotation, and scale invariant optical correlation. , 1976, Applied optics.

[24]  M.S. Shahriar,et al.  Demonstration of a single exposure technique for determining the M/# of a holographic substrate , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..