Deformation behavior in isothermal compression of the TC11 titanium alloy

[1]  C. Sarrazin-Baudoux,et al.  Deformation and damage mechanisms in an α/β 6242 Ti alloy in fatigue, dwell-fatigue and creep at room temperature. Influence of internal hydrogen , 2009 .

[2]  Miaoquan Li,et al.  Effect of the strain on the deformation behavior of isothermally compressed Ti―6Al―4V alloy , 2009 .

[3]  D. Shan,et al.  Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation , 2009 .

[4]  Y. Prasad,et al.  Hot deformation behaviour of Mg–3Al alloy—A study using processing map , 2008 .

[5]  Miaoquan Li,et al.  High temperature deformation behavior of near alpha Ti-5.6Al-4.8Sn-2.0Zr alloy , 2007 .

[6]  M. Jahazi,et al.  Flow stress prediction during hot working of near-α titanium alloys , 2007 .

[7]  P. Wanjara,et al.  Influence of thermomechanical processing on microstructural evolution in near-α alloy IMI834 , 2006 .

[8]  Y. Prasad,et al.  Hot deformation behaviour of as-cast Mg–2Zn–1Mn alloy in compression: a study with processing map , 2003 .

[9]  Y. Prasad,et al.  Deformation behaviour of beta titanium alloy Ti–10V–4.5Fe–1.5Al in hot upset forging , 2002 .

[10]  K. P. Rao,et al.  Flow stress behavior and deformation characteristics of Ti-3Al-5V-5Mo compressed at elevated temperatures , 2002 .

[11]  W. G. Frazier,et al.  Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure , 2002 .

[12]  Miaoquan Li,et al.  Prediction of the mechanical properties of forged TC11 titanium alloy by ANN , 2002 .

[13]  W. G. Frazier,et al.  Hot working of commercial Ti–6Al–4V with an equiaxed α–β microstructure: materials modeling considerations , 2000 .

[14]  S. Semiatin,et al.  Thermomechanical processing of beta titanium alloys—an overview , 1998 .

[15]  Y. V. R. K. Prasad,et al.  Processing maps for hot working of titanium alloys , 1998 .

[16]  Woei-Shyan Lee,et al.  The effects of strain rate and temperature on the compressive deformation behaviour of Ti6Al4V alloy , 1997 .

[17]  D. Drobnjak,et al.  Effect of test variables on apparent activation energy for hot working and critical recrystallization temperatures of V-microalloyed steel , 1997 .

[18]  J. Jonas,et al.  A mechanical interpretation of the activation energy of high temperature deformation in two phase materials , 1996 .

[19]  S. Medina,et al.  Influence of vanadium on the static recrystallization of austenite in microalloyed steels , 1993, Journal of Materials Science.

[20]  Pierre Suquet,et al.  Overall potentials and extremal surfaces of power law or ideally plastic composites , 1993 .

[21]  S. M. Doraivelu,et al.  Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 , 1984 .