Complex networks: The key to systems biology

Though introduced recently, complex networks research has grown steadily because of its potential to represent, characterize and model a wide range of intricate natural systems and phenomena. Because of the intrinsic complexity and systemic organization of life, complex networks provide a specially promising framework for systems biology investigation. The current article is an up-to-date review of the major developments related to the application of complex networks in biology, with special attention focused on the more recent literature. The main concepts and models of complex networks are presented and illustrated in an accessible fashion. Three main types of networks are covered: transcriptional regulatory networks, protein-protein interaction networks and metabolic networks. The key role of complex networks for systems biology is extensively illustrated by several of the papers reviewed.

[1]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[2]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[3]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Alessandro Flammini,et al.  Characterization and modeling of protein–protein interaction networks , 2005 .

[5]  Guido Caldarelli,et al.  Universal scaling relations in food webs , 2003, Nature.

[6]  Luciano da Fontoura Costa,et al.  Correlating thalamocortical connectivity and activity , 2006 .

[7]  J. F. Poyatos,et al.  How biologically relevant are interaction-based modules in protein networks? , 2004, Genome Biology.

[8]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[9]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[10]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[11]  S. Wuchty Scale-free behavior in protein domain networks. , 2001, Molecular biology and evolution.

[12]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[13]  Uri Alon,et al.  An Introduction to Systems Biology , 2006 .

[14]  T. Takagi,et al.  Assessment of prediction accuracy of protein function from protein–protein interaction data , 2001, Yeast.

[15]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[16]  J. Levine,et al.  Surfing the p53 network , 2000, Nature.

[17]  Ricard V. Sole,et al.  Modularity "for free" in genome architecture? , 2003, q-bio/0312032.

[18]  D. West Introduction to Graph Theory , 1995 .

[19]  Julio Collado-Vides,et al.  RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation , 2007, Nucleic Acids Res..

[20]  Nicola J. Rinaldi,et al.  Computational discovery of gene modules and regulatory networks , 2003, Nature Biotechnology.

[21]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[22]  Süleyman Cenk Sahinalp,et al.  Not All Scale-Free Networks Are Born Equal: The Role of the Seed Graph in PPI Network Evolution , 2006, Systems Biology and Computational Proteomics.

[23]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[24]  C. Chothia One thousand families for the molecular biologist , 1992, Nature.

[25]  A. Aderem Systems Biology: Its Practice and Challenges , 2005, Cell.

[26]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[27]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[28]  S. Teichmann,et al.  Gene regulatory network growth by duplication , 2004, Nature Genetics.

[29]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[30]  Joel E. Cohen,et al.  Community Food Webs: Data and Theory , 1990 .

[31]  Paul Erdös,et al.  On random graphs, I , 1959 .

[32]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[34]  Marc Vidal,et al.  Yeast Two-hybrid Systems and Protein Interaction Mapping Projects for Yeast and Worm , 2022 .

[35]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[36]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[37]  See-Kiong Ng,et al.  Integrative Approach for Computationally Inferring Protein Domain Interactions , 2003, Bioinform..

[38]  Ting Wang,et al.  An improved map of conserved regulatory sites for Saccharomyces cerevisiae , 2006, BMC Bioinformatics.

[39]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[40]  A. Wagner The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. , 2001, Molecular biology and evolution.

[41]  R. Tjian,et al.  Transcription regulation and animal diversity , 2003, Nature.

[42]  Stefan Wuchty,et al.  Interaction and domain networks of yeast , 2002, Proteomics.

[43]  P. Uetz,et al.  Systematic and large-scale two-hybrid screens. , 2000, Current opinion in microbiology.

[44]  Yaniv Ziv,et al.  Revealing modular organization in the yeast transcriptional network , 2002, Nature Genetics.

[45]  G. Chartrand,et al.  Graphs & Digraphs , 1986 .

[46]  A. Vespignani,et al.  Modeling of Protein Interaction Networks , 2001, Complexus.

[47]  John J. Wyrick,et al.  Genome-wide location and function of DNA binding proteins. , 2000, Science.

[48]  Alessandro Vespignani,et al.  Global protein function prediction from protein-protein interaction networks , 2003, Nature Biotechnology.

[49]  E. Winzeler,et al.  Genomics, gene expression and DNA arrays , 2000, Nature.

[50]  D. Fell,et al.  A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks , 2000, Nature Biotechnology.

[51]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[52]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[53]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[54]  Paul J. Flory,et al.  Molecular Size Distribution in Three Dimensional Polymers. II. Trifunctional Branching Units , 1941 .

[55]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[56]  P. Bork Shuffled domains in extracellular proteins , 1991, FEBS letters.

[57]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[58]  M. Newman,et al.  Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Andreas Wagner,et al.  Convergent evolution of gene circuits , 2003, Nature Genetics.

[60]  D. Phillips,et al.  The three-dimensional structure of an enzyme molecule. , 1966, Scientific American.

[61]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[62]  A. Wagner,et al.  Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications , 2002, BMC Evolutionary Biology.

[63]  Ronald G. Larson,et al.  Fluid dynamics: Turbulence without inertia , 2000, Nature.

[64]  V. Godfrey,et al.  Functional Collaboration between Different Cyclin-Dependent Kinase Inhibitors Suppresses Tumor Growth with Distinct Tissue Specificity , 2000, Molecular and Cellular Biology.

[65]  Denis Thieffry,et al.  RegulonDB: a database on transcriptional regulation in Escherichia coli , 1998, Nucleic Acids Res..

[66]  Araceli M. Huerta,et al.  From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[67]  Y. Moreno,et al.  Resilience to damage of graphs with degree correlations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[69]  Matthew W. Hahn,et al.  The evolution of transcriptional regulation in eukaryotes. , 2003, Molecular biology and evolution.

[70]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[71]  A. Barabasi,et al.  Network medicine--from obesity to the "diseasome". , 2007, The New England journal of medicine.

[72]  M. Gerstein,et al.  Genomic analysis of gene expression relationships in transcriptional regulatory networks. , 2003, Trends in genetics : TIG.

[73]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[74]  O. Sporns,et al.  Hierarchical features of large-scale cortical connectivity , 2005, q-bio/0508007.

[75]  B. Bollobás The evolution of random graphs , 1984 .

[76]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[77]  P. Bourgine,et al.  Topological and causal structure of the yeast transcriptional regulatory network , 2002, Nature Genetics.

[78]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[79]  L. Hood,et al.  A Genomic Regulatory Network for Development , 2002, Science.

[80]  Jaap Heringa,et al.  An analysis of protein domain linkers: their classification and role in protein folding. , 2002, Protein engineering.

[81]  A. Wagner How the global structure of protein interaction networks evolves , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[82]  Luciano da Fontoura Costa,et al.  Protein domain connectivity and essentiality , 2006 .

[83]  S. Carroll Endless Forms The Evolution of Gene Regulation and Morphological Diversity , 2000, Cell.

[84]  M. Gerstein,et al.  Structure and evolution of transcriptional regulatory networks. , 2004, Current opinion in structural biology.

[85]  Diego Garlaschelli,et al.  Universality in food webs , 2004 .

[86]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[87]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[88]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[89]  Z N Oltvai,et al.  Evolutionary conservation of motif constituents in the yeast protein interaction network , 2003, Nature Genetics.

[90]  J. Wojcik,et al.  The protein–protein interaction map of Helicobacter pylori , 2001, Nature.