Characterization of Novel Virulent Broad-Host-Range Phages of Xylella fastidiosa and Xanthomonas

ABSTRACT The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ∼4 × 10−12 ml cell−1 min−1 for X. fastidiosa strain Temecula 1 and ∼5 × 10−10 to 7 × 10−10 ml cell−1 min−1 for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.

[1]  Y. Tanami Studies on lysogenesis , 1956 .

[2]  D. Struck,et al.  Regulation of a Phage Endolysin by Disulfide Caging , 2010, Journal of bacteriology.

[3]  S. Casjens,et al.  Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. , 2011, Virology.

[4]  R. Lavigne,et al.  The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. , 2009, Environmental microbiology.

[5]  M. Jacques,et al.  Adhesion and fitness in the bean phyllosphere and transmission to seed of Xanthomonas fuscans subsp. fuscans. , 2009, Molecular plant-microbe interactions : MPMI.

[6]  M. Schwartz Reversible interaction between coliphage lambda and its receptor protein. , 1975, Journal of molecular biology.

[7]  Y. Takikawa,et al.  Identification of Non-Pathogenic Xanthomonas Strains Associated with Plants , 1996 .

[8]  J. Lawrence,et al.  Complete Genomic Sequence of the Virulent Salmonella Bacteriophage SP6 , 2004, Journal of bacteriology.

[9]  G. Volckaert,et al.  Genomic Analysis of Pseudomonas aeruginosa Phages LKD16 and LKA1: Establishment of the φKMV Subgroup within the T7 Supergroup , 2006, Journal of bacteriology.

[10]  Zhijian Yao,et al.  Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. , 2005, Genome research.

[11]  R. Koebnik,et al.  Adhesion mechanisms of plant-pathogenic Xanthomonadaceae. , 2011, Advances in experimental medicine and biology.

[12]  G H Goldman,et al.  Comparative Analyses of the Complete Genome Sequences of Pierce's Disease and Citrus Variegated Chlorosis Strains of Xylella fastidiosa , 2003, Journal of bacteriology.

[13]  I. Wang,et al.  Holins: the protein clocks of bacteriophage infections. , 2000, Annual review of microbiology.

[14]  R. H. Olsen,et al.  Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5 , 1978, Journal of bacteriology.

[15]  Evelien M. Adriaenssens,et al.  Bacteriophages LIMElight and LIMEzero of Pantoea agglomerans, Belonging to the “phiKMV-Like Viruses” , 2011, Applied and Environmental Microbiology.

[16]  S. Casjens Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae. , 2008, Research in microbiology.

[17]  J. Lawrence,et al.  Complete Genomic Sequence of the Virulent Salmonella Bacteriophage SP 6 , 2004 .

[18]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[19]  Complete Genome Sequence of the Enterobacter cancerogenus Bacteriophage Enc34 , 2012, Journal of Virology.

[20]  Seon-Hwa Lim,et al.  Functional analysis of pilQ gene in Xanthomanas oryzae pv. oryzae, bacterial blight pathogen of rice , 2008, The Journal of Microbiology.

[21]  A. Kropinski,et al.  The genome of the Pseudomonas aeruginosa generalized transducing bacteriophage F116. , 2005, Gene.

[22]  E. Stokstad Agriculture. Field research on bees raises concern about low-dose pesticides. , 2012, Science.

[23]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[24]  Leandro M Moreira,et al.  Comparative analyses of Xanthomonas and Xylella complete genomes. , 2005, Omics : a journal of integrative biology.

[25]  R F Doolittle,et al.  Progressive alignment of amino acid sequences and construction of phylogenetic trees from them. , 1996, Methods in enzymology.

[26]  G. Bertani,et al.  STUDIES ON LYSOGENESIS I , 1951, Journal of bacteriology.

[27]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[28]  A. Obradović,et al.  Bacteriophages for plant disease control. , 2007, Annual review of phytopathology.

[29]  R. Young Bacteriophage holins: deadly diversity. , 2002, Journal of molecular microbiology and biotechnology.

[30]  William J. French,et al.  Axenic culture of the bacteria associated with phony disease of peach and plum leaf scald , 1981, Current Microbiology.

[31]  J. Gill,et al.  Phage choice, isolation, and preparation for phage therapy. , 2010, Current pharmaceutical biotechnology.

[32]  M. Voskuil,et al.  An allelic exchange system for compliant genetic manipulation of the select agents Burkholderia pseudomallei and Burkholderia mallei. , 2009, Gene.

[33]  D. Guttman,et al.  Complete Sequence and Evolutionary Genomic Analysis of the Pseudomonas aeruginosa Transposable Bacteriophage D3112 , 2004, Journal of bacteriology.

[34]  Alex Kasman,et al.  Overcoming the Phage Replication Threshold: a Mathematical Model with Implications for Phage Therapy , 2002, Journal of Virology.

[35]  Ry Young,et al.  Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts. , 2007, Journal of molecular biology.

[36]  T. Burr,et al.  Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation. , 2007, Microbiology.

[37]  A. Bogdanove,et al.  Novel Candidate Virulence Factors in Rice Pathogen Xanthomonas oryzae pv. oryzicola as Revealed by Mutational Analysis , 2007, Applied and Environmental Microbiology.

[38]  Jungmin Kim,et al.  Pseudomonas aeruginosa Bacteriophage PA1Ø Requires Type IV Pili for Infection and Shows Broad Bactericidal and Biofilm Removal Activities , 2012, Applied and Environmental Microbiology.

[39]  J. Gill,et al.  Genomes and Characterization of Phages Bcep22 and BcepIL02, Founders of a Novel Phage Type in Burkholderia cenocepacia , 2011, Journal of bacteriology.

[40]  M. Borodovsky,et al.  GeneMark.hmm: new solutions for gene finding. , 1998, Nucleic acids research.

[41]  R A Sayle,et al.  RASMOL: biomolecular graphics for all. , 1995, Trends in biochemical sciences.

[42]  A. Darzins,et al.  Pseudomonas aeruginosa transposable bacteriophages D3112 and B3 require pili and surface growth for adsorption , 1990, Journal of bacteriology.

[43]  J. Gouzy,et al.  The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae , 2009, BMC Genomics.

[44]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[45]  J. Gill,et al.  Genomic and Biological Analysis of Phage Xfas53 and Related Prophages of Xylella fastidiosa , 2009, Journal of bacteriology.

[46]  D. Guttman,et al.  Complete Sequence and Evolutionary Genomic Analysis of the Pseudomonas aeruginosa Transposable Bacteriophage D 3112 , 2003 .

[47]  F. Hu,et al.  Functional characterization of the endolysin gene encoded by Pseudomonas aeruginosa bacteriophage PaP1 , 2010 .

[48]  K. Severinov,et al.  Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. , 2009, FEMS microbiology letters.

[49]  C. Yanisch-Perron,et al.  Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.

[50]  A. Lindberg Bacteriophage receptors. , 1973, Annual review of microbiology.

[51]  Species-Specific Type II Restriction-Modification System of Xylella fastidiosa Temecula1 , 2010, Applied and Environmental Microbiology.

[52]  M. Van Sluys,et al.  Xylella and Xanthomonas Mobil'omics. , 2005, Omics : a journal of integrative biology.

[53]  Ming-Te Yang,et al.  A novel restriction-modification system from Xanthomonas campestris pv. vesicatoria encodes a m4C-methyltransferase and a nonfunctional restriction endonuclease. , 2007, FEMS microbiology letters.

[54]  A. Purcell,et al.  Multiplication and movement of Xylella fastidiosa within grapevine and four other plants. , 1995 .

[55]  E. Summer Preparation of a phage DNA fragment library for whole genome shotgun sequencing. , 2009, Methods in molecular biology.

[56]  M. Igo,et al.  Chromosome-Based Genetic Complementation System for Xylella fastidiosa , 2009, Applied and Environmental Microbiology.

[57]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[58]  Natalia N. Ivanova,et al.  Draft sequencing and comparative genomics of Xylella fastidiosa strains reveal novel biological insights. , 2002, Genome research.

[59]  S. Lindow,et al.  Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. , 2008, Annual review of phytopathology.

[60]  R. Young Phage lysis: do we have the hole story yet? , 2013, Current opinion in microbiology.

[61]  Robert J. Clifford,et al.  Enhanced De Novo Assembly of High Throughput Pyrosequencing Data Using Whole Genome Mapping , 2013, PloS one.

[62]  John A. Tainer,et al.  Type IV pilus structure and bacterial pathogenicity , 2004, Nature Reviews Microbiology.

[63]  Hakdong Shin,et al.  Complete genome sequence analysis of bacterial-flagellum-targeting bacteriophage chi , 2013, Archives of Virology.

[64]  D. Goulson,et al.  Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production , 2012, Science.

[65]  G. Volckaert,et al.  The adsorption of Pseudomonas aeruginosa bacteriophage phiKMV is dependent on expression regulation of type IV pili genes. , 2009, FEMS microbiology letters.

[66]  Karlene H. Lynch,et al.  Genomic characterization of JG068, a novel virulent podovirus active against Burkholderia cenocepacia , 2013, BMC Genomics.

[67]  D. E. Bradley The adsorption of the Pseudomonas aeruginosa filamentous bacteriophage Pf to its host. , 1973, Canadian journal of microbiology.

[68]  B. Bextine,et al.  Xylella fastidiosa genotype differentiation by SYBR Green-based QRT-PCR. , 2007, FEMS microbiology letters.

[69]  A. Krogh,et al.  Prediction of lipoprotein signal peptides in Gram‐negative bacteria , 2003, Protein science : a publication of the Protein Society.

[70]  J. Lautenberger,et al.  Host-Controlled Modification and Restriction of Bacteriophage T7 by Escherichia coli B , 1973, Journal of virology.

[71]  D. Struck,et al.  A signal-arrest-release sequence mediates export and control of the phage P1 endolysin. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Ju-Hoon Lee,et al.  Identification and Characterization of a Novel Flagellum-Dependent Salmonella-Infecting Bacteriophage, iEPS5 , 2013, Applied and Environmental Microbiology.

[73]  G. O’Toole,et al.  Isolation and Characterization of a Generalized Transducing Phage for Pseudomonas aeruginosa Strains PAO1 and PA14 , 2004, Journal of bacteriology.

[74]  G. Volckaert,et al.  The lysis cassette of bacteriophage фKMV encodes a signal-arrest-release endolysin and a pinholin , 2011, Bacteriophage.

[75]  D. E. Bradley Basic Characterization of a Pseudomonas aeruginosa Pilus-Dependent Bacteriophage with a Long Noncontractile Tail , 1973, Journal of virology.

[76]  Robert D. Finn,et al.  InterPro in 2011: new developments in the family and domain prediction database , 2011, Nucleic acids research.

[77]  Comparative analysis of two phenotypically-similar but genomically-distinct Burkholderia cenocepacia-specific bacteriophages , 2012, BMC Genomics.

[78]  D. E. Bradley,et al.  The structure and infective process of a contractile Pseudomonas aeruginosa bacteriophage. , 1968, The Journal of general virology.

[79]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[80]  G. Sarkis,et al.  Genome structure of mycobacteriophage D29: implications for phage evolution. , 1998, Journal of molecular biology.

[81]  T. Burr,et al.  Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa. , 2009, FEMS microbiology letters.

[82]  G. O’Toole,et al.  Isolation and Characterization of a Generalized Transducing Phage for Pseudomonas aeruginosa Strains PAO 1 and PA 14 , 2004 .

[83]  R. Hendrix,et al.  Chaperone-protein interactions that mediate assembly of the bacteriophage lambda tail to the correct length. , 2014, Journal of molecular biology.