A genome-wide association study identifies a susceptibility 1 locus for refractive errors and myopia at 15 q 14 2 3

[1]  Nathaniel D Heintzman,et al.  Finding distal regulatory elements in the human genome. , 2009, Current opinion in genetics & development.

[2]  Tobias A. Knoch,et al.  GRIMP: a web- and grid-based tool for high-speed analysis of large-scale genome-wide association using imputed data , 2009, Bioinform..

[3]  A. Fernández-Medarde,et al.  RasGRF1 disruption causes retinal photoreception defects and associated transcriptomic alterations , 2009, Journal of neurochemistry.

[4]  A. Verkerk,et al.  Functional annotation of the human retinal pigment epithelium transcriptome , 2009, BMC Genomics.

[5]  Nathaniel D. Heintzman,et al.  Histone modifications at human enhancers reflect global cell-type-specific gene expression , 2009, Nature.

[6]  G Gazzard,et al.  Outdoor activity and myopia in Singapore teenage children , 2009, British Journal of Ophthalmology.

[7]  A. Kihara,et al.  Connexin36, an essential element in the rod pathway, is highly expressed in the essentially rodless retina of Gallus gallus , 2009, The Journal of comparative neurology.

[8]  N. Mcbrien,et al.  Regulation of scleral cell contraction by transforming growth factor-beta and stress: competing roles in myopic eye growth. , 2009, The Journal of biological chemistry.

[9]  T. Young Molecular Genetics of Human Myopia: An Update , 2009, Optometry and vision science : official publication of the American Academy of Optometry.

[10]  X. Jeunemaître,et al.  Deletion of WNK1 First Intron Results in Misregulation of Both Isoforms in Renal and Extrarenal Tissues , 2008, Hypertension.

[11]  Earl L. Smith,et al.  Myopia: Recent Advances in Molecular Studies; Prevalence, Progression and Risk Factors; Emmetropization; Therapies; Optical Links; Peripheral Refraction; Sclera and Ocular Growth; Signalling Cascades; and Animal Models. , 2008 .

[12]  Susan Vitale,et al.  Prevalence of refractive error in the United States, 1999-2004. , 2008, Archives of ophthalmology.

[13]  C. Gieger,et al.  Identification of ten loci associated with height highlights new biological pathways in human growth , 2008, Nature Genetics.

[14]  A. Iwase,et al.  Refractive errors in an elderly Japanese population: the Tajimi study. , 2008, Ophthalmology.

[15]  Monique M. B. Breteler,et al.  The Rotterdam Study: 2016 objectives and design update , 2015, European Journal of Epidemiology.

[16]  P. D. de Jong,et al.  Comparison of human retinal pigment epithelium gene expression in macula and periphery highlights potential topographic differences in Bruch's membrane. , 2007, Molecular vision.

[17]  Yurii S. Aulchenko,et al.  BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm108 Genetics and population analysis GenABEL: an R library for genome-wide association analysis , 2022 .

[18]  R. Maeda,et al.  Dissecting the regulatory landscape of the Abd-B gene of the bithorax complex , 2006, Development.

[19]  S. Saw How blinding is pathological myopia? , 2006, British Journal of Ophthalmology.

[20]  S. Saw,et al.  Myopia and associated pathological complications , 2005, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[21]  R. Dermietzel,et al.  Loss of connexin36 increases retinal cell vulnerability to secondary cell loss , 2005, The European journal of neuroscience.

[22]  Paul Mitchell,et al.  The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. , 2004, Archives of ophthalmology.

[23]  Chonnettia Jones,et al.  Cell-cycle regulation and cell-type specification in the developing Drosophila compound eye. , 2004, Seminars in cell & developmental biology.

[24]  S. M. Ali,et al.  Prevalence of refractive error in Bangladeshi adults: results of the National Blindness and Low Vision Survey of Bangladesh. , 2003, Ophthalmology.

[25]  N. Mcbrien,et al.  Role of the sclera in the development and pathological complications of myopia , 2003, Progress in Retinal and Eye Research.

[26]  S. Bloomfield,et al.  Connexin36 Is Essential for Transmission of Rod-Mediated Visual Signals in the Mammalian Retina , 2002, Neuron.

[27]  Y. Tano Pathologic myopia: where are we now?. , 2002, American journal of ophthalmology.

[28]  T. Spector,et al.  The St. Thomas' UK Adult Twin Registry. , 2002, Twin research : the official journal of the International Society for Twin Studies.

[29]  L. Dandona,et al.  Population‐based assessment of refractive error in India: the Andhra Pradesh eye disease study , 2002, Clinical & experimental ophthalmology.

[30]  R. Weiler,et al.  Visual Transmission Deficits in Mice with Targeted Disruption of the Gap Junction Gene Connexin36 , 2001, The Journal of Neuroscience.

[31]  S. Saw,et al.  Nearwork and myopia in young children , 2001, The Lancet.

[32]  E. Chan,et al.  Human autoantibodies to a novel Golgi protein golgin-67: high similarity with golgin-95/gm 130 autoantigen. , 2000, Journal of autoimmunity.

[33]  D. Paul,et al.  Targeted Ablation of Connexin50 in Mice Results in Microphthalmia and Zonular Pulverulent Cataracts , 1998, The Journal of cell biology.

[34]  R. Metlapally,et al.  Complex trait genetics of refractive error. , 2007, Archives of ophthalmology.

[35]  G. Abecasis,et al.  Merlin—rapid analysis of dense genetic maps using sparse gene flow trees , 2002, Nature Genetics.

[36]  I. Niesman,et al.  Disruption of Gja8 (alpha8 connexin) in mice leads to microphthalmia associated with retardation of lens growth and lens fiber maturation. , 2002, Development.

[37]  D. Karlin,et al.  Axial length measurements and fundus changes of the myopic eye. , 1971, American journal of ophthalmology.