Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties.

This review highlights various design and synthesis approaches toward the construction of ZMOFs, which are metal-organic frameworks (MOFs) with topologies and, in some cases, features akin to traditional inorganic zeolites. The interest in this unique subset of MOFs is correlated with their exceptional characteristics arising from the periodic pore systems and distinctive cage-like cavities, in conjunction with modular intra- and/or extra-framework components, which ultimately allow for tailoring of the pore size, pore shape, and/or properties towards specific applications.

[1]  M. Eddaoudi,et al.  Fabrication and non-covalent modification of highly oriented thin films of a zeolite-like metal–organic framework (ZMOF) with rho topology , 2015 .

[2]  Zhangjing Zhang,et al.  Perspective of microporous metal–organic frameworks for CO2 capture and separation , 2014 .

[3]  Mohamed Eddaoudi,et al.  A supermolecular building approach for the design and construction of metal-organic frameworks. , 2014, Chemical Society reviews.

[4]  Amy J. Cairns,et al.  Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks , 2014, Nature Chemistry.

[5]  Amy J. Cairns,et al.  Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture , 2014, Nature Communications.

[6]  S. Okajima,et al.  Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. , 2014, Journal of the American Chemical Society.

[7]  C. Serre,et al.  Extended and functionalized porous iron(III) tri- or dicarboxylates with MIL-100/101 topologies. , 2014, Chemical communications.

[8]  Diego A. Gómez-Gualdrón,et al.  Isoreticular series of (3,24)-connected metal-organic frameworks: Facile synthesis and high methane uptake properties , 2014 .

[9]  Mohamed Eddaoudi,et al.  Porous organic polymers with anchored aldehydes: a new platform for post-synthetic amine functionalization en route for enhanced CO2 adsorption properties. , 2014, Chemical communications.

[10]  Michael O'Keeffe,et al.  Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. , 2014, Chemical reviews.

[11]  Zhijie Chen,et al.  Microporous Heptazine Functionalized (3,24)-Connected rht-Metal–Organic Framework: Synthesis, Structure, and Gas Sorption Analysis , 2014 .

[12]  Jihong Yu,et al.  A 4 + 4 strategy for synthesis of zeolitic metal-organic frameworks: an indium-MOF with SOD topology as a light-harvesting antenna. , 2013, Chemical communications.

[13]  Amy J. Cairns,et al.  Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. , 2013, Journal of the American Chemical Society.

[14]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[15]  Amy J. Cairns,et al.  On demand: the singular rht net, an ideal blueprint for the construction of a metal-organic framework (MOF) platform. , 2012, Angewandte Chemie.

[16]  R. Krishna,et al.  Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. , 2012, Angewandte Chemie.

[17]  Jingping Zhang,et al.  N-rich zeolite-like metal–organic framework with sodalite topology: high CO2 uptake, selective gas adsorption and efficient drug delivery , 2012 .

[18]  H. García,et al.  Fuel purification, Lewis acid and aerobic oxidation catalysis performed by a microporous Co-BTT (BTT3− = 1,3,5-benzenetristetrazolate) framework having coordinatively unsaturated sites , 2012 .

[19]  Vincent Guillerm,et al.  A method for screening the potential of MOFs as CO2 adsorbents in pressure swing adsorption processes. , 2012, ChemSusChem.

[20]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[21]  Mohamed Eddaoudi,et al.  The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. , 2012, Chemical communications.

[22]  J. Zubieta,et al.  Syntheses, structural characterization and properties of transition metal complexes of 5,5'-(1,4-phenylene)bis(1H-tetrazole) (H(2)bdt), 5',5''-(1,1'-biphenyl)-4,4'-diylbis(1H-tetrazole) (H(2)dbdt) and 5,5',5''-(1,3,5-phenylene)tris(1H-tetrazole) (H(3)btt). , 2011, Dalton transactions.

[23]  Jian Zhang,et al.  Pore partition effect on gas sorption properties of an anionic metal-organic framework with exposed Cu2+ coordination sites. , 2011, Chemical communications.

[24]  M. Eddaoudi,et al.  Insight into the construction of metal–organic polyhedra: metal–organic cubes as a case study , 2011 .

[25]  P. Feng,et al.  A mixed ligand route for the construction of tetrahedrally coordinated porous lithium frameworks. , 2011, Dalton transactions.

[26]  J. Long,et al.  High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites , 2011 .

[27]  Peng Wang,et al.  Porous cobalt(II)-imidazolate supramolecular isomeric frameworks with selective gas sorption property. , 2011, Chemical communications.

[28]  P. Feng,et al.  A zeolitic porous lithium-organic framework constructed from cubane clusters. , 2011, Chemical communications.

[29]  G. Seifert,et al.  Polymorphs of lithium-boron imidazolates: energy landscape and hydrogen storage properties. , 2011, Dalton transactions.

[30]  Fan Zuo,et al.  Cooperative assembly of three-ring-based zeolite-type metal-organic frameworks and Johnson-type dodecahedra. , 2011, Angewandte Chemie.

[31]  J. Marrot,et al.  Zeolitic polyoxometalates metal organic frameworks (Z-POMOF) with imidazole ligands and epsilon-Keggin ions as building blocks; computational evaluation of hypothetical polymorphs and a synthesis approach. , 2010, Physical chemistry chemical physics : PCCP.

[32]  Craig M. Brown,et al.  Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods , 2010 .

[33]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[34]  Mohamed Eddaoudi,et al.  Zeolite-like metal-organic frameworks (ZMOFs) based on the directed assembly of finite metal-organic cubes (MOCs). , 2009, Journal of the American Chemical Society.

[35]  J. Marrot,et al.  Zeolitic polyoxometalate-based metal-organic frameworks (Z-POMOFs): computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF1. , 2009, Journal of the American Chemical Society.

[36]  J. Eckert,et al.  Exceptional stability and high hydrogen uptake in hydrogen-bonded metal-organic cubes possessing ACO and AST zeolite-like topologies. , 2009, Journal of the American Chemical Society.

[37]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[38]  Hong‐Cai Zhou,et al.  Investigation of gas adsorption performances and H2 affinities of porous metal-organic frameworks with different entatic metal centers. , 2009, Inorganic chemistry.

[39]  C. Serre,et al.  Giant pores in a chromium 2,6-naphthalenedicarboxylate open-framework structure with MIL-101 topology. , 2009, Angewandte Chemie.

[40]  P. Feng,et al.  Zeolite RHO-type net with the lightest elements. , 2009, Journal of the American Chemical Society.

[41]  P. Feng,et al.  Zeolitic boron imidazolate frameworks. , 2009, Angewandte Chemie.

[42]  Hyunuk Kim,et al.  Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[43]  J. Eckert,et al.  Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen storage platform: lithium and magnesium ion-exchange and H(2)-(rho-ZMOF) interaction studies. , 2009, Journal of the American Chemical Society.

[44]  Hong‐Cai Zhou,et al.  Microporous lanthanide metal-organic frameworks containing coordinatively linked interpenetration: syntheses, gas adsorption studies, thermal stability analysis, and photoluminescence investigation. , 2009, Inorganic chemistry.

[45]  M. Eddaoudi,et al.  Template-directed assembly of zeolite-like metal-organic frameworks (ZMOFs): a usf-ZMOF with an unprecedented zeolite topology. , 2008, Angewandte Chemie.

[46]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[47]  M. Eddaoudi,et al.  Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. , 2008, Journal of the American Chemical Society.

[48]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[49]  Hong‐Cai Zhou,et al.  A coordinatively linked Yb metal-organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity. , 2008, Angewandte Chemie.

[50]  Myoung Soo Lah,et al.  A designed metal-organic framework based on a metal-organic polyhedron. , 2008, Chemical communications.

[51]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[52]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[53]  Dorina F. Sava,et al.  Quest for zeolite-like metal-organic frameworks: on pyrimidinecarboxylate bis-chelating bridging ligands. , 2008, Journal of the American Chemical Society.

[54]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[55]  Michael J. Zaworotko,et al.  Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[56]  A. Matzger,et al.  A crystalline mesoporous coordination copolymer with high microporosity. , 2008, Angewandte Chemie.

[57]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[58]  Young Kwan Park,et al.  Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter. , 2007, Angewandte Chemie.

[59]  Z. Su,et al.  Mixed-valence iron(II, III) trimesates with open frameworks modulated by solvents. , 2007, Inorganic chemistry.

[60]  D. Zhao,et al.  Design and generation of extended zeolitic metal-organic frameworks (ZMOFs): synthesis and crystal structures of zinc(II) imidazolate polymers with zeolitic topologies. , 2007, Chemistry.

[61]  Mohamed Eddaoudi,et al.  Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. , 2007, Angewandte Chemie.

[62]  W. You,et al.  Two new three-dimensional porous polyoxometalates with typical ACO topological open frameworks: {[Cu4V13IVV5VO42 (N03)(C3H10N2 )8]·10H2O}n and {[CU4V12IVV6VO42 (SO4)(C3H10N2 )8]·10H2O}n , 2007 .

[63]  Mircea Dincă,et al.  Observation of Cu2+-H2 interactions in a fully desolvated sodalite-type metal-organic framework. , 2007, Angewandte Chemie.

[64]  Gérard Férey,et al.  Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. , 2006, Angewandte Chemie.

[65]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[66]  Sean Parkin,et al.  A mesoporous metal-organic framework with permanent porosity. , 2006, Journal of the American Chemical Society.

[67]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[68]  Mohamed Eddaoudi,et al.  Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities. , 2006, Chemical communications.

[69]  Xiao-Ming Chen,et al.  Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. , 2006, Angewandte Chemie.

[70]  C. Ania,et al.  H2, N2, CO, and CO2 sorption properties of a series of robust sodalite-type microporous coordination polymers. , 2006, Inorganic chemistry.

[71]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[72]  William R. Gemmill,et al.  A tetrahedrally coordinated cobalt(II) aminophosphonate containing one-dimensional channels , 2005 .

[73]  Yen Wei,et al.  A metal-organic framework with the zeolite MTN topology containing large cages of volume 2.5 nm3. , 2005, Angewandte Chemie.

[74]  M. Eddaoudi,et al.  4-Connected metal-organic assemblies mediated via heterochelation and bridging of single metal ions: Kagome lattice and the M6L12 octahedron. , 2005, Journal of the American Chemical Society.

[75]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[76]  M. Eddaoudi,et al.  Directed assembly of metal-organic cubes from deliberately predesigned molecular building blocks. , 2004, Chemical communications.

[77]  Jihong Yu,et al.  Zn2[(S)-O3PCH2NHC4H7CO2]2: a homochiral 3D zinc phosphonate with helical channels. , 2004, Angewandte Chemie.

[78]  Gérard Férey,et al.  A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. , 2004, Angewandte Chemie.

[79]  T. Bein,et al.  Synthesis and Structure of the Phosphonocarboxylic Acid H2O3PCH2‐NC5H9‐COOH·2H2O and the Manganese Phosphonocarboxylate Mn[O3PCH2‐N(H)C5H9‐COO] , 2004 .

[80]  D. Zhao,et al.  Two polymorphs of cobalt(II) imidazolate polymers synthesized solvothermally by using one organic template N,N-dimethylacetamide. , 2004, Inorganic chemistry.

[81]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[82]  C. Rao,et al.  Metal carboxylates with open architectures. , 2004, Angewandte Chemie.

[83]  J. Navarro,et al.  Mineralomimetic sodalite- and muscovite-type coordination frameworks. Dynamic crystal-to-crystal interconversion processes sensitive to ion pair recognition. , 2004, Journal of the American Chemical Society.

[84]  J. Sieler,et al.  Self-assembly sodalite-like framework. , 2004, Dalton transactions.

[85]  B. Abrahams,et al.  Serendipity and design in the generation of new coordination polymers: an extensive series of highly symmetrical guanidinium-templated, carbonate-based networks with the sodalite topology. , 2004, Journal of the American Chemical Society.

[86]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[87]  Jie Hu,et al.  Technological Advances in High-Throughput Screening , 2004, American journal of pharmacogenomics : genomics-related research in drug development and clinical practice.

[88]  J. Navarro,et al.  [Cu(4-oxopyrimidinate)2 · nH2O]∞: a robust sodalite type metal-organic framework exhibiting a rich host–guest chemistry , 2003 .

[89]  S. Nakata,et al.  Effect of vanadium on USY zeolite destruction in the presence of sodium ions and steam—studies by solid-state NMR , 2003 .

[90]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[91]  Jie‐Peng Zhang,et al.  [Zn(bim)2] · (H2O)1.67: A metal-organic open-framework with sodalite topology , 2003 .

[92]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[93]  Dunyi Liu,et al.  Paleoproterozoic lower crust beneath Nushan in Anhui Province: Evidence from zircon SHRIMP U-Pb dating on granulite xenoliths in Cenozoic alkali basalt , 2003 .

[94]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[95]  B. Abrahams,et al.  New tricks for an old dog: the carbonate ion as a building block for networks including examples of composition [Cu6(CO3)12(C(NH2)3)8]4- with the sodalite topology. , 2003, Angewandte Chemie.

[96]  C. N. R. Rao,et al.  Open-Framework Cadmium Succinates with Interpenetrating Frameworks Formed by Tetrahedral [ClCd4O24] and [BrCd4O24] Clusters , 2003 .

[97]  Mark E. Davis Ordered porous materials for emerging applications , 2002, Nature.

[98]  Wenbin Lin,et al.  Crystal engineering of NLO materials based on metal--organic coordination networks. , 2002, Accounts of chemical research.

[99]  M. Eddaoudi,et al.  Geometric requirements and examples of important structures in the assembly of square building blocks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[100]  X. You,et al.  [Co5(im)10⋅2 MB]∞: A Metal‐Organic Open‐Framework with Zeolite‐Like Topology , 2002 .

[101]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[102]  N. Masciocchi,et al.  Extended polymorphism in copper(II) imidazolate polymers: a spectroscopic and XRPD structural study. , 2001, Inorganic chemistry.

[103]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[104]  I. Polyakova,et al.  Crystal structure of strontium aqua(ethylenediaminetetraacetato)cobaltate(II) tetrahydrate Sr[CoEdta(H2O)] · 4H2O , 2001 .

[105]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[106]  J. Sandall,et al.  Faujasite catalysis of aromatic nitrations with dinitrogen pentoxide. The effect of aluminium content on catalytic activity and regioselectivity. The nitration of pyrazole , 2001 .

[107]  P. Naumov,et al.  A rhombohedral polymorph of aqua­(malonato)­cadmium(II) hydrate , 2001 .

[108]  J. M. Salas,et al.  Cooperative Guest Inclusion by a Zeolite Analogue Coordination Polymer. Sorption Behavior with Gases and Amine and Group 1 Metal Salts , 2001 .

[109]  C. Moreau,et al.  The catalysis of the Ruff oxidative degradation of aldonic acids by titanium‐containing zeolites , 2000 .

[110]  O. Kahn Chemistry and physics of supramolecular magnetic materials. , 2000, Accounts of chemical research.

[111]  Michael O'Keeffe,et al.  Frameworks for Extended Solids: Geometrical Design Principles , 2000 .

[112]  Gérard Férey,et al.  Building Units Design and Scale Chemistry , 2000 .

[113]  H. Fun,et al.  Heterometallic polymeric clusters containing tetraselenotungstate anion: one-dimensional helical chain [[La(Me2SO)8. , 2000, Inorganic chemistry.

[114]  Yuxiao Wang,et al.  Studies on two interesting microporous polymeric clusters {[Et4N]2[MS4Cu4(CN)4]}n (M = Mo or W) with three-dimensional open frameworks: synthesis, structural characterization, strong optical non-linearities and large optical limiting properties , 2000 .

[115]  Cheetham,et al.  Open-Framework Inorganic Materials. , 1999, Angewandte Chemie.

[116]  F. Lloret,et al.  Novel Three-Dimensional Cage Assembly of a &mgr;(4)-Carbonato-Bridged Cobalt(II) Compound [Co(2)(bpm)(H(2)O)(2)(CO(3))(OH)]NO(3).4H(2)O. , 1999, Inorganic chemistry.

[117]  Robert C. Thompson,et al.  Iron(II) 2-methylimidazolate and copper(II) 1,2,4-triazolate complexes: systems exhibiting long-range ferromagnetic ordering at low temperatures , 1999 .

[118]  S. Kitagawa,et al.  Rational Synthesis of Stable Channel‐Like Cavities with Methane Gas Adsorption Properties: [{Cu2(pzdc)2(L)}n] (pzdc=pyrazine‐2,3‐dicarboxylate; L=a Pillar Ligand) , 1999 .

[119]  Hailian Li,et al.  Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids† , 1998 .

[120]  M. Turnbull,et al.  SYNTHESIS AND STRUCTURE OF (2-AMINO-5-BROMOPYRIMIDINE)BROMOCOPPER(I) , 1997 .

[121]  S. W. Keller An Acentric, Three‐Dimensional Coordination Polymer: Synthesis and Structure of [Cu(pyrimidine)2]BF4 , 1997 .

[122]  T. Kawamura,et al.  (CuX)n Helical Chains in [Pt(S2CNEt2)2Cu2X2] (X = Br, Cl) , 1995 .

[123]  P. Barboux,et al.  Synthesis, Structure and Reactivity of Some Functionalized Zinc and Copper(II) Phosphonates , 1995 .

[124]  P. Janvier,et al.  Synthesis and crystal structure of Zn(O3PC2H4NH2), the first functionalized zeolite-like phosphonate , 1995 .

[125]  C. Che,et al.  Sodium trans-dicyano[N,N'-1,2-phenylenebis(2-pyridinecarboxamido)]cobaltate(III) , 1994 .

[126]  M. Zaworotko Crystal engineering of diamondoid networks , 1994 .

[127]  R. Mao,et al.  Modified zeolites for the removal of calcium and magnesium from hard water , 1994 .

[128]  T. Mallouk,et al.  Turning Down the Heat: Design and Mechanism in Solid-State Synthesis , 1993, Science.

[129]  R. Szostak Zeolite microporous solids: Synthesis, structure and reactivity: Edited by Eric G. Derouane, Francisco Lemos, Claude Naccache, and Fernando Ramoa Riberio. Kulwer Academic Publishers, Dordrecht, The Netherlands, 1991. xiii + 643 pp. $183.00 , 1992 .

[130]  H. Yuge,et al.  Crystal structures ofcatena-[diligatocadmium(II) tetra-μ-cyanocadmate(II)] host clathrates: Diamminecadmium(II) tetracyanocadmate(II)-benzene(1/2), diamminecadmium(II) tetracyanocadmate(II)-aniline(1/2), ethylenediaminecadmium(II) tetracyanocadmate(II)-aniline(1/2), and a novel type bis(aniline)cadm , 1992 .

[131]  F. Lemos,et al.  Zeolite Microporous Solids: Synthesis, Structure, and Reactivity , 1992 .

[132]  Ki‐Min Park,et al.  Novel cage-like cavity accommodating a pair of guest molecules in the structure ofcatena-[dl-1,2-diaminopropanecadmium(II) tetra-μ-cyanocadmate(II)]-(1,2-dichloroethane)(1/1) , 1991 .

[133]  Ki‐Min Park,et al.  Novel Three-dimensional Metal-complex Host Structures of catena-[Propylenediaminecadmium(II) Tetra-μ-cyanonickelate(II)] and catena-[Propylenediaminecadmium(II) Tetra-μ-cyanocadmate(II)] , 1990 .

[134]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[135]  Shin-ichi Nishikiori,et al.  Crystal structures of ethylenediaminecadmium(II) tetracyanocadmate(II)-benzene(1/2) and ethylenediaminecadmium(II) tetracyanocadmate(II) , 1985 .

[136]  J. Waters,et al.  Some observations on the structures of pyridoxal-aminoacid schiff base complexes , 1982 .

[137]  M. R. Udupa,et al.  Crystal and molecular structure of mercury(II) tetrathiocyanatobis(dimethylformamide)cobaltate(II) , 1980 .

[138]  M. Post,et al.  Crystal structure of polymeric cadmium(II) malonate monohydrate , 1974 .