THz-TDS Time-Trace Analysis for the Extraction of Material and Metamaterial Parameters

We report on a method to fit time-trace data from a terahertz time-domain-spectroscopy system enabling the extraction of physical parameters from a material or metamaterial. To accomplish this, we developed a Python-based open-source software called Fit@TDS that functions on a personal computer. This software includes commonly used methods where the refractive index is extracted from frequency-domain data. This method has limitations when the signal is too noisy or when an absorption peak saturates the spectrum. Thus, the software also includes a new method where the refractive indices are directly fitted from the time trace. The idea is to model a material or a metamaterial through parametric physical models (Drude–Lorentz model and time-domain coupled mode theory) and implement this in the propagation model to simulate the time trace. Then, an optimization algorithm is used to retrieve the parameters of the model corresponding to the studied material/metamaterial. In this paper, we explain the method and test it on fictitious samples to probe its feasibility and reliability. Finally, we used Fit@TDS on real samples of high-resistivity silicon, lactose, and gold metasurface on quartz to show the capacity of the method.

[1]  H. Merbold,et al.  Stratified dispersive model for material characterization using terahertz time-domain spectroscopy. , 2014, Optics letters.

[2]  M. Koch,et al.  Highly accurate optical material parameter determination with THz time-domain spectroscopy. , 2007, Optics express.

[3]  T. Hänsch,et al.  Adaptive real-time dual-comb spectroscopy , 2012, Nature Communications.

[4]  Thomas Dekorsy,et al.  Ultrafast time-domain spectroscopy system using 10 GHz asynchronous optical sampling with 100 kHz scan rate. , 2016, Optics express.

[5]  M. Okoniewski,et al.  Highly Accurate Debye Models for Normal and Malignant Breast Tissue Dielectric Properties at Microwave Frequencies , 2007, IEEE Microwave and Wireless Components Letters.

[6]  E. Drouard,et al.  Photonic crystals and optical mode engineering for thin film photovoltaics. , 2013, Optics express.

[7]  P. Kužel,et al.  Broadband dielectric terahertz metamaterials with negative permeability. , 2009, Optics letters.

[8]  Stepan Lucyszyn,et al.  Extracting Complex Dielectric Properties From Reflection-Transmission Mode Spectroscopy , 2018, IEEE Access.

[9]  X. Letartre,et al.  Modal approach for tailoring the absorption in a photonic crystal membrane , 2012, 1306.3832.

[10]  Patrick Mounaix,et al.  Tunable terahertz metamaterials with negative permeability , 2009 .

[11]  M. Beck,et al.  Superconducting complementary metasurfaces for THz ultrastrong light-matter coupling , 2013, 1311.0180.

[12]  D. Grischkowsky,et al.  Far infrared spectroscopy with subpicosecond electrical pulses on transmission lines , 1987 .

[13]  Quantification of residual crystallinity of ball-milled, commercially available, anhydrous β-lactose by differential scanning calorimetry and terahertz spectroscopy , 2015, Journal of Thermal Analysis and Calorimetry.

[14]  Mattias Beck,et al.  Strong light-matter coupling at terahertz frequencies at room temperature in electronic LC resonators , 2010 .

[15]  Tetsuhiko Ohba,et al.  Far‐infrared absorption of silicon crystals , 1988 .

[16]  Shanhui Fan,et al.  Coupling of modes analysis of resonant channel add-drop filters , 1999 .

[17]  Masahiko Tani,et al.  Terahertz Time-Domain Spectroscopy of Solids: A Review , 2005 .

[18]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[19]  D. Grischkowsky,et al.  Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon , 2004 .

[20]  Qin Chen,et al.  Narrow-Linewidth and High-Transmission Terahertz Bandpass Filtering by Metallic Gratings , 2015, IEEE Transactions on Terahertz Science and Technology.

[21]  Osman S Ahmed,et al.  Efficient Optimization Approach for Accurate Parameter Extraction With Terahertz Time-Domain Spectroscopy , 2010, Journal of Lightwave Technology.

[22]  J. Coutaz,et al.  Accurate Characterization of Resonant Samples in the Terahertz Regime Through a Technique Combining Time-Domain Spectroscopy and Kramers–Kronig Analysis , 2016, IEEE Transactions on Terahertz Science and Technology.

[23]  Mohamed A. Swillam,et al.  Efficient material parameters estimation with terahertz time-domain spectroscopy , 2011, OPTO.

[24]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[25]  M. R. Freeman,et al.  Metal-wire terahertz time-domain spectroscopy , 2005 .

[26]  K. Cheung,et al.  Picosecond photoconducting Hertzian dipoles , 1984 .

[27]  Derek Abbott,et al.  Material thickness optimization for transmission-mode terahertz time-domain spectroscopy. , 2008, Optics express.

[28]  Sergey Mitryukovskiy,et al.  Retrieving material and metamaterial parameters directly from time-domain spectroscopy time trace , 2018, 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz).

[29]  Francis Hindle,et al.  Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods , 2007 .

[30]  S. Hagness,et al.  A generalized Drude model for doped silicon at terahertz frequencies derived from microscopic transport simulation , 2013 .

[31]  William C. Davidon,et al.  Variable Metric Method for Minimization , 1959, SIAM J. Optim..

[32]  Lionel Duvillaret,et al.  Noise analysis in THz time-domain spectroscopy and accuracy enhancement of optical constant determination , 1999, Photonics West.

[33]  Rainer Leonhardt,et al.  Ultra-high Q terahertz whispering-gallery modes in a silicon resonator , 2018, 1802.00549.

[34]  B. Fischer,et al.  Chemical recognition in terahertz time-domain spectroscopy and imaging , 2005 .

[35]  J. E. Bjarnason,et al.  Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory , 2007 .

[36]  Alexandre Locquet,et al.  Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry , 2017, Scientific Reports.

[37]  Hironori Takahashi,et al.  Single-shot terahertz spectroscopy using pulse-front tilting of an ultra-short probe pulse. , 2011, Optics express.

[38]  Richard Baraniuk,et al.  Material parameter estimation with terahertz time-domain spectroscopy. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  Ruben E. Perez,et al.  Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach , 2011 .

[40]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[41]  Flavie Braud,et al.  Broadband Terahertz Light–Matter Interaction Enhancement for Precise Spectroscopy of Thin Films and Micro-Samples , 2018 .

[42]  J. Coutaz,et al.  A reliable method for extraction of material parameters in terahertz time-domain spectroscopy , 1996 .

[43]  Masanori Hangyo,et al.  Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy , 2001 .

[44]  Ludovic Desplanque,et al.  Detection of picosecond electrical pulses using the intrinsic Franz–Keldysh effect , 2001 .

[45]  Fangrong Hu,et al.  Highly Sensitive Detection of Carbendazim by Using Terahertz Time-Domain Spectroscopy Combined With Metamaterial , 2018, IEEE Transactions on Terahertz Science and Technology.

[46]  Peter Haring Bolívar,et al.  Terahertz Modulator Based on Vertically Coupled Fano Metamaterial , 2018, IEEE Transactions on Terahertz Science and Technology.

[47]  C. Soukoulis,et al.  Investigation of broadband terahertz generation from metasurface. , 2018, Optics express.

[48]  T. J. Parker,et al.  Observation of two-phonon difference bands in the FIR transmission spectrum of Si , 1984 .

[49]  J. Lan,et al.  Linewidth Extraction From the THz Absorption Spectra Using a Modified Lorentz Model , 2013 .

[50]  Andrea Markelz,et al.  THz time domain spectroscopy of biomolecular conformational modes. , 2002, Physics in medicine and biology.

[51]  C. W. Gabel,et al.  Picosecond microwave pulse generation (A) , 1981 .

[52]  Yan Peng,et al.  Qualitative and Quantitative Identification of Components in Mixture by Terahertz Spectroscopy , 2018, IEEE Transactions on Terahertz Science and Technology.

[53]  Jean-François Lampin,et al.  Modeling and parameter retrieving in time domain spectroscopy of material and metamaterial , 2018, Photonics Europe.

[54]  van Exter M,et al.  Carrier dynamics of electrons and holes in moderately doped silicon. , 1990, Physical review. B, Condensed matter.

[55]  Richard G. Baraniuk,et al.  Gas sensing using terahertz time-domain spectroscopy , 1998 .

[56]  G. Fang,et al.  The calculation of dielectric dispersive models in THz range with GA , 2007 .

[57]  Chulki Kim,et al.  Ultrasensitive Detection of Residual Pesticides Using THz Near-Field Enhancement , 2016, IEEE Transactions on Terahertz Science and Technology.

[58]  Joaquim R. R. A. Martins,et al.  pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization , 2011, Structural and Multidisciplinary Optimization.

[59]  Thomas Rades,et al.  Drug hydrate systems and dehydration processes studied by terahertz pulsed spectroscopy. , 2007, International journal of pharmaceutics.

[60]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..