Near-infrared luminescent cubic silicon carbide nanocrystals for in vivo biomarker applications: an ab initio study.

Molecule-sized fluorescent emitters are much sought-after to probe biomolecules in living cells. We demonstrate here by time-dependent density functional calculations that the experimentally achievable 1-2 nm sized silicon carbide nanocrystals can emit light in the near-infrared region after introducing appropriate color centers in them. These near-infrared luminescent silicon carbide nanocrystals may act as ideal fluorophores for in vivo bioimaging.

[1]  T. Umeda,et al.  Divacancy in 4H-SiC. , 2006, Physical review letters.

[2]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[3]  J. Rao,et al.  Fluorescence imaging in vivo: recent advances. , 2007, Current opinion in biotechnology.

[4]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[5]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[6]  T. Krauss,et al.  Fluorescence spectroscopy of single lead sulfide quantum dots. , 2006, Nano letters.

[7]  M. C. Mancini,et al.  Bioimaging: second window for in vivo imaging. , 2009, Nature nanotechnology.

[8]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[9]  Jun Zhu,et al.  Luminescent small-diameter 3C-SiC nanocrystals fabricated via a simple chemical etching method , 2007 .

[10]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[11]  Rogier Verberk,et al.  Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy , 2011 .

[12]  E. Janzén,et al.  Silicon vacancy related defect in 4H and 6H SiC , 2000 .

[13]  Dirk Poelman,et al.  Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots , 2007 .

[14]  E. Janzén,et al.  Defects and carrier compensation in semi-insulating 4H-SiC substrates , 2007 .

[15]  Hak Soo Choi,et al.  Design considerations for tumour-targeted nanoparticles. , 2010, Nature nanotechnology.

[16]  Dai Fukumura,et al.  InAs(ZnCdS) quantum dots optimized for biological imaging in the near-infrared. , 2009, Journal of the American Chemical Society.

[17]  Byung-Ryool Hyun,et al.  Near-infrared fluorescence imaging with water-soluble lead salt quantum dots. , 2007, The journal of physical chemistry. B.

[18]  E. Kaxiras,et al.  Theory of spin-conserving excitation of the N-V(-) center in diamond. , 2009, Physical review letters.

[19]  M. Vörös,et al.  Optical absorption of diamond nanocrystals from ab initio density-functional calculations , 2009 .

[20]  Uri Banin,et al.  Synthesis of Size-Selected, Surface-Passivated InP Nanocrystals , 1996 .

[21]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[22]  Ron C. Hardman A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors , 2005, Environmental health perspectives.

[23]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[24]  J. Frangioni In vivo near-infrared fluorescence imaging. , 2003, Current opinion in chemical biology.

[25]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[26]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[27]  Á. Gali,et al.  The absorption spectrum of hydrogenated silicon carbide nanocrystals from ab initio calculations , 2009, 0903.1866.

[28]  M. Bawendi,et al.  Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging , 2003, Molecular Imaging.

[29]  T. Krauss,et al.  Quantum dots: A charge for blinking. , 2011, Nature materials.

[30]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[31]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[32]  S. Santavirta,et al.  Biocompatibility of silicon carbide in colony formation test in vitro , 1998, Archives of Orthopaedic and Trauma Surgery.

[33]  Michael G. Spencer,et al.  Deep donor state of vanadium in cubic silicon carbide (3C‐SiC) , 1994 .

[34]  L. Childress,et al.  Supporting Online Material for , 2006 .

[35]  E. Janzén,et al.  Deep levels and carrier compensation in V-doped semi-insulating 4H-SiC , 2007 .

[36]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[37]  Kai Chen,et al.  InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible , 2008, Nano research.

[38]  Z. Wang,et al.  Local structure and magnetic properties of Mn-doped 3C-SiC nanoparticles , 2011 .

[39]  Á. Gali,et al.  Characterization of luminescent silicon carbide nanocrystals prepared by reactive bonding and subsequent wet chemical etching , 2011 .

[40]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[41]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[42]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[43]  M. Bawendi,et al.  Renal clearance of quantum dots , 2007, Nature Biotechnology.

[44]  Yu Liu,et al.  Defect-induced magnetism in neutron irradiated 6H-SiC single crystals. , 2011, Physical review letters.

[45]  P. Chu,et al.  Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites. , 2005, Physical review letters.

[46]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[47]  Volodymyr Lysenko,et al.  Application of 3C-SiC quantum dots for living cell imaging , 2008 .

[48]  Maureen A Walling,et al.  Quantum Dots for Live Cell and In Vivo Imaging , 2009, International journal of molecular sciences.

[49]  Á. Gali Excitation spectrum of point defects in semiconductors studied by time-dependent density functional theory , 2012 .

[50]  Timothy Thatt Yang Tan,et al.  Size control, shape evolution, and silica coating of near-infrared-emitting PbSe quantum dots , 2007 .

[51]  Yun Wah Lam,et al.  3C-SiC nanocrystals as fluorescent biological labels. , 2008, Small.

[52]  Adam Gali,et al.  Time‐dependent density functional study on the excitation spectrum of point defects in semiconductors , 2011 .

[53]  Thomas Frauenheim,et al.  The absorption of oxygenated silicon carbide nanoparticles. , 2010, The Journal of chemical physics.

[54]  H. Matsunami,et al.  Formation of semi‐insulating 6H‐SiC layers by vanadium ion implantations , 1996 .

[55]  Daniel Evanko The new fluorescent probes on the block , 2008, Nature Methods.