Projection Pursuit Indices Based on the Empirical Distribution Function

Exploratory projection pursuit is a technique for finding interesting low-dimensional projections of multivariate data. To reach this goal, one optimizes an index, assigned to every projection, that characterizes the structure present in the projection. Most indices require the estimation of the marginal density of the projected data. Such estimations involve a tuning parameter that greatly influences the behavior of the index. However, the optimization is usually performed with an ad hoc, often fixed value for this parameter. This article proposes indices based on the empirical distribution function that do not require to be tuned. This allows users to use exploratory projection pursuit without having to predetermine an “esoteric” tuning parameter.

[1]  Virginia Torczon,et al.  On the Convergence of the Multidirectional Search Algorithm , 1991, SIAM J. Optim..

[2]  S. Klinke,et al.  Exploratory Projection Pursuit , 1995 .

[3]  Wojtek J. Krzanowski,et al.  Projection Pursuit Clustering for Exploratory Data Analysis , 2003 .

[4]  Silvia Lanteri,et al.  Classification of olive oils from their fatty acid composition , 1983 .

[5]  A. Buja,et al.  Projection Pursuit Indexes Based on Orthonormal Function Expansions , 1993 .

[6]  R. Zamar,et al.  A multivariate Kolmogorov-Smirnov test of goodness of fit , 1997 .

[7]  P. Hopke,et al.  Exploration of multivariate chemical data by projection pursuit , 1992 .

[8]  Robert Sedgewick,et al.  Algorithms in C , 1990 .

[9]  C. Posse Projection pursuit exploratory data analysis , 1995 .

[10]  J. Vetter,et al.  Managing Performance Analysis with Dynamic Statistical Projection Pursuit , 2000, ACM/IEEE SC 1999 Conference (SC'99).

[11]  Carlos A. Berenstein,et al.  Quotient Signal Decomposition and Order Estimation , 2002 .

[12]  D. Freedman,et al.  Asymptotics of Graphical Projection Pursuit , 1984 .

[13]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[14]  M. Hollander A nonparametric test for bivariate symmetry , 1971 .

[15]  D. R. Cox,et al.  Discussion: Projection Pursuit , 1985 .

[16]  C. Posse Tools for Two-Dimensional Exploratory Projection Pursuit , 1995 .

[17]  Andreas Buja,et al.  Grand tour and projection pursuit , 1995 .

[18]  John C. W. Rayner,et al.  A test for bivariate normality , 1988 .