Centroidal Voronoi Tessellation Based Proper Orthogonal Decomposition Analysis

Proper orthogonal decompositions (POD) have been used to systematically extract the most energetic modes while centroidal Voronoi tessellations (CVT) have been used to systematically extract best representatives. We combine the ideas of CVT and POD into a hybrid method for model reduction. The optimality of such an approach and various practical implementation strategies are discussed.

[1]  E. Sachs,et al.  Trust-region proper orthogonal decomposition for flow control , 2000 .

[2]  Sivaguru S. Ravindran,et al.  Proper Orthogonal Decomposition in Optimal Control of Fluids , 1999 .

[3]  Jens Nørkær Sørensen,et al.  Evaluation of Proper Orthogonal Decomposition-Based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows , 1999, SIAM J. Sci. Comput..

[4]  K. Kunisch,et al.  Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .

[5]  G. Berkooz,et al.  Galerkin projections and the proper orthogonal decomposition for equivariant equations , 1993 .

[6]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[7]  Ioannis G. Kevrekidis,et al.  Alternative approaches to the Karhunen-Loève decomposition for model reduction and data analysis , 1996 .

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  H. Park,et al.  Reduction of modes for the control of viscous flows , 2001 .

[10]  Stefan Volkwein Optimal Control of a Phase‐Field Model Using Proper Orthogonal Decomposition , 2001 .

[11]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[12]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[13]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[14]  H. M. Park,et al.  Low dimensional modeling of flow reactors , 1996 .

[15]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[16]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[17]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[18]  J. Lumley Stochastic tools in turbulence , 1970 .

[19]  Qiang Du,et al.  Grid generation and optimization based on centroidal Voronoi tessellations , 2002, Appl. Math. Comput..

[20]  H. Park,et al.  Boundary Optimal Control of Natural Convection by Means of Mode Reduction , 2002 .

[21]  Muruhan Rathinam,et al.  Dynamic Iteration Using Reduced Order Models: A Method for Simulation of Large Scale Modular Systems , 2002, SIAM J. Numer. Anal..

[22]  B. B. King,et al.  Sensor location in feedback control of partial differential equation systems , 2000, Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No.00CH37162).

[23]  M. Gunzburger,et al.  Meshfree, probabilistic determination of point sets and support regions for meshless computing , 2002 .

[24]  Nadine Aubry,et al.  Preserving Symmetries in the Proper Orthogonal Decomposition , 1993, SIAM J. Sci. Comput..

[25]  L. Sirovich Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .

[26]  S. Ravindran A reduced-order approach for optimal control of fluids using proper orthogonal decomposition , 2000 .

[27]  Christopher J. Holden,et al.  Graham and I , 1980 .

[28]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[29]  Control of Navier-Stokes equations by means of mode reduction , 2000 .

[30]  S. S. Ravindran,et al.  Reduced-Order Adaptive Controllers for Fluid Flows Using POD , 2000, J. Sci. Comput..

[31]  Qiang Du,et al.  Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations , 2002, Parallel Comput..

[32]  J. Neyman Second Berkeley Symposium on Mathematical Statistics and Probability , 1951 .

[33]  S. SIAMJ.,et al.  SYMMETRY AND THE KARHUNEN–LOÈVE ANALYSIS , 2007 .

[34]  Lawrence Sirovich,et al.  Low-dimensional dynamics for the complex Ginzburg-Landau equation , 1990 .

[35]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[36]  Dieter Armbruster,et al.  Timely Communication: Symmetry and the Karhunen-Loève Analysis , 1997, SIAM J. Sci. Comput..

[37]  Jonathan C. Mattingly,et al.  Low-dimensional models of coherent structures in turbulence , 1997 .