Photomethanation of Gaseous CO2 over Ru/Silicon Nanowire Catalysts with Visible and Near‐Infrared Photons

Gaseous CO2 is transformed photochemically and thermochemically in the presence of H2 to CH4 at millimole per hour per gram of catalyst conversion rates, using visible and near‐infrared photons. The catalyst used to drive this reaction comprises black silicon nanowire supported ruthenium. These results represent a step towards engineering broadband solar fuels tandem photothermal reactors that enable a three‐step process involving i) CO2 capture, ii) gaseous water splitting into H2, and iii) reduction of gaseous CO2 by H2.

[1]  Wang Wei,et al.  Methanation of carbon dioxide: an overview , 2011 .

[2]  Michael Grätzel,et al.  Identifying champion nanostructures for solar water-splitting. , 2013, Nature materials.

[3]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[4]  Geoffrey A. Ozin,et al.  The Rational Design of a Single‐Component Photocatalyst for Gas‐Phase CO2 Reduction Using Both UV and Visible Light , 2014, Advanced science.

[5]  J. Murray,et al.  Climate policy: Oil's tipping point has passed , 2012, Nature.

[6]  K. Ogura,et al.  Dark catalytic reduction of CO2 over photo-pretreated NiO/ksgr catalyst , 1992 .

[7]  Richard A Kerr,et al.  Energy supplies. Peak oil production may already be here. , 2011, Science.

[8]  Roel van de Krol,et al.  Water-splitting catalysis and solar fuel devices: artificial leaves on the move. , 2013, Angewandte Chemie.

[9]  Paul Stradins,et al.  Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules , 2009 .

[10]  M. Grätzel,et al.  High intensity simulated solar irradiation: effect on the kinetics of a methanation reaction , 1991 .

[11]  Michael Grätzel,et al.  Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst , 2014, Nature Communications.

[12]  M. Graetzel,et al.  A fourier transform infrared spectroscopic study of C02 methanation on supported ruthenium , 1991 .

[13]  Y. Kohno,et al.  A New Type of Photocatalysis Initiated by Photoexcitation of Adsorbed Carbon Dioxide on ZrO2 , 2001 .

[14]  J. D. de Gouw,et al.  Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology , 2014 .

[15]  Alexander Novikov,et al.  Experimental measurement of work function in doped silicon surfaces , 2010 .

[16]  Yu‐Chuan Lin,et al.  Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. , 2013, Nanoscale.

[17]  H. Skriver,et al.  Surface energy and work function of elemental metals. , 1992, Physical review. B, Condensed matter.

[18]  G. Olah,et al.  Anthropogenic chemical carbon cycle for a sustainable future. , 2011, Journal of the American Chemical Society.

[19]  R. Schlögl,et al.  Methanation of carbon dioxide over Ru/Titania at room temperature: explorations for a photoassisted catalytic reaction , 1991 .

[20]  Avelino Corma,et al.  Complete photocatalytic reduction of CO₂ to methane by H₂ under solar light irradiation. , 2014, Journal of the American Chemical Society.

[21]  Alexander J. Cowan,et al.  Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. , 2013, Chemical Society reviews.

[22]  F. Solymosi,et al.  Methanation of CO2 on supported Ru catalysts , 1981 .

[23]  C. Yuan,et al.  Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor , 2007 .

[24]  Eduardo Zarza,et al.  Parabolic-trough solar collectors and their applications , 2010 .

[25]  Xiuling Li,et al.  Metal-assisted chemical etching in HF/H2O2 produces porous silicon , 2000 .

[26]  G. Mul,et al.  Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction? , 2010, Journal of the American Chemical Society.

[27]  H. García,et al.  Photocatalytic CO(2) reduction using non-titanium metal oxides and sulfides. , 2013, ChemSusChem.

[28]  Kui‐Qing Peng,et al.  Silicon Nanowires for Photovoltaic Solar Energy Conversion , 2011, Advanced materials.

[29]  M. Grätzel,et al.  Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure , 1987, Nature.

[30]  Hermenegildo Garcia,et al.  Solar Light Photocatalytic CO2 Reduction: General Considerations and Selected Bench-Mark Photocatalysts , 2014, International journal of molecular sciences.

[31]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[32]  R. J. Powell,et al.  Optical Properties of NiO and CoO , 1970 .

[33]  N. Ahmed,et al.  Photoconversion of carbon dioxide in zinc–copper–gallium layered double hydroxides: The kinetics to hydrogen carbonate and further to CO/methanol , 2014 .

[34]  Craig A. Grimes,et al.  Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis , 2011 .

[35]  R. Behm,et al.  Reaction Intermediates and Side Products in the Methanation of CO and CO2 over Supported Ru Catalysts in H2-Rich Reformate Gases† , 2011 .

[36]  G. Ozin,et al.  Enhanced hematite water electrolysis using a 3D antimony-doped tin oxide electrode. , 2013, ACS nano.

[37]  Y. Izumi,et al.  Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond , 2013 .

[38]  M. Graetzel,et al.  Energy Resources through Photochemistry and Catalysis , 1983 .

[39]  S. Galvagno,et al.  Influence of the support on CO2 methanation over Ru catalysts: an FT-IR study , 1998 .

[40]  Tsunehiro Tanaka,et al.  Photocatalytic Reduction of CO2 to CO in the Presence of H2 or CH4 as a Reductant over MgO , 2004 .