Climatic-niche evolution follows similar rules in plants and animals

[1]  R. Lira-Saade,et al.  Historical biogeography and phylogeny of Cucurbita: Insights from ancestral area reconstruction and niche evolution. , 2018, Molecular phylogenetics and evolution.

[2]  J. Wiens,et al.  Testing the role of climate in speciation: New methods and applications to squamate reptiles (lizards and snakes) , 2018, Molecular ecology.

[3]  D. Schluter,et al.  The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity , 2018, Nature Ecology & Evolution.

[4]  P. Maas,et al.  Parallel diversifications of Cremastosperma and Mosannona (Annonaceae), tropical rainforest trees tracking Neogene upheaval of South America , 2018, Royal Society Open Science.

[5]  Jordi Martínez-Vilalta,et al.  A multi-species synthesis of physiological mechanisms in drought-induced tree mortality , 2017, Nature Ecology & Evolution.

[6]  Samantha R Anderson,et al.  Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates , 2017, Evolution; international journal of organic evolution.

[7]  P. Maas,et al.  Parallel diversifications of Cremastosperma and Mosannona (Annonaceae), tropical rainforest trees tracking Neogene upheaval of the South American continent , 2017, bioRxiv.

[8]  J. Wiens Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species , 2016, PLoS biology.

[9]  J. Wiens,et al.  Rates of change in climatic niches in plant and animal populations are much slower than projected climate change , 2016, Proceedings of the Royal Society B: Biological Sciences.

[10]  J. Wiens,et al.  Climate change is projected to outpace rates of niche change in grasses , 2016, Biology Letters.

[11]  J. Wiens,et al.  Diversification rates and species richness across the Tree of Life , 2016, Proceedings of the Royal Society B: Biological Sciences.

[12]  K. Niklas Plant Evolution: An Introduction to the History of Life , 2016 .

[13]  Carsten Meyer,et al.  Multidimensional biases, gaps and uncertainties in global plant occurrence information. , 2016, Ecology letters.

[14]  X. Hua,et al.  The impact of seasonality on niche breadth, distribution range and species richness: a theoretical exploration of Janzen's hypothesis , 2016, Proceedings of the Royal Society B: Biological Sciences.

[15]  J. Tobias,et al.  Widespread correlations between climatic niche evolution and species diversification in birds. , 2016, The Journal of animal ecology.

[16]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[17]  H. Qian,et al.  An updated megaphylogeny of plants, a tool for generating plant phylogenies, and an analysis of phylogenetic community structure , 2016 .

[18]  S. Magallón,et al.  A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. , 2015, The New phytologist.

[19]  J. Wiens,et al.  Evolution of climatic niche specialization: a phylogenetic analysis in amphibians , 2014, Proceedings of the Royal Society B: Biological Sciences.

[20]  J. Weir,et al.  Latitudinal gradients in climatic-niche evolution accelerate trait evolution at high latitudes. , 2014, Ecology letters.

[21]  Luke J. Harmon,et al.  Geiger V2.0: an Expanded Suite of Methods for Fitting Macroevolutionary Models to Phylogenetic Trees , 2014, Bioinform..

[22]  David C. Tank,et al.  Three keys to the radiation of angiosperms into freezing environments , 2013, Nature.

[23]  P. Marquet,et al.  Heat freezes niche evolution. , 2013, Ecology letters.

[24]  Zhi-qiang Zhang Animal biodiversity: An update of classification and diversity in 2013. In : Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013) , 2013 .

[25]  Ignacio Quintero,et al.  Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. , 2013, Ecology letters.

[26]  R. Slatyer,et al.  Niche breadth predicts geographical range size: a general ecological pattern. , 2013, Ecology letters.

[27]  J. Wiens,et al.  How Does Climate Influence Speciation? , 2013, The American Naturalist.

[28]  J. Wiens,et al.  What determines the climatic niche width of species? The role of spatial and temporal climatic variation in three vertebrate clades , 2013 .

[29]  D. Adams Comparing evolutionary rates for different phenotypic traits on a phylogeny using likelihood. , 2013, Systematic biology.

[30]  J. Wiens,et al.  HOW IS THE RATE OF CLIMATIC‐NICHE EVOLUTION RELATED TO CLIMATIC‐NICHE BREADTH? , 2012, Evolution; international journal of organic evolution.

[31]  R. Bryson,et al.  An asymmetry in niche conservatism contributes to the latitudinal species diversity gradient in New World vertebrates. , 2012, Ecology letters.

[32]  M. Crisp,et al.  Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? , 2012, The New phytologist.

[33]  G. Hunt Measuring rates of phenotypic evolution and the inseparability of tempo and mode , 2012, Paleobiology.

[34]  A. Ghasemi,et al.  Normality Tests for Statistical Analysis: A Guide for Non-Statisticians , 2012, International journal of endocrinology and metabolism.

[35]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[36]  Antoine Guisan,et al.  Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders , 2012, Science.

[37]  Craig Moritz,et al.  Latitude, elevational climatic zonation and speciation in New World vertebrates , 2012, Proceedings of the Royal Society B: Biological Sciences.

[38]  V. Savolainen,et al.  Diversification of land plants: insights from a family-level phylogenetic analysis , 2011, BMC Evolutionary Biology.

[39]  M. Silman,et al.  Keep collecting: accurate species distribution modelling requires more collections than previously thought , 2011 .

[40]  Daniel J. G. Lahr,et al.  Estimating the timing of early eukaryotic diversification with multigene molecular clocks , 2011, Proceedings of the National Academy of Sciences.

[41]  Walter Jetz,et al.  Phylogenetic conservatism of environmental niches in mammals , 2011, Proceedings of the Royal Society B: Biological Sciences.

[42]  John-Arvid Grytnes,et al.  Niche conservatism as an emerging principle in ecology and conservation biology. , 2010, Ecology letters.

[43]  M. Massot,et al.  Erosion of Lizard Diversity by Climate Change and Altered Thermal Niches , 2010, Science.

[44]  Stephen A. Smith,et al.  Life history influences rates of climatic niche evolution in flowering plants , 2009, Proceedings of the Royal Society B: Biological Sciences.

[45]  R. Holt Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives , 2009, Proceedings of the National Academy of Sciences.

[46]  Walter Jetz,et al.  Global associations between terrestrial producer and vertebrate consumer diversity , 2009, Proceedings of the Royal Society B: Biological Sciences.

[47]  Paul R. Martin,et al.  Impacts of climate warming on terrestrial ectotherms across latitude , 2008, Proceedings of the National Academy of Sciences.

[48]  Jorge Soberón Grinnellian and Eltonian niches and geographic distributions of species. , 2007, Ecology letters.

[49]  Robert K. Colwell,et al.  Species Richness and Evolutionary Niche Dynamics: A Spatial Pattern–Oriented Simulation Experiment , 2007, The American Naturalist.

[50]  H. Qian Relationships between Plant and Animal Species Richness at a Regional Scale in China , 2007, Conservation biology : the journal of the Society for Conservation Biology.

[51]  V. Savolainen,et al.  NEUTRAL THEORY, PHYLOGENIES, AND THE RELATIONSHIP BETWEEN PHENOTYPIC CHANGE AND EVOLUTIONARY RATES , 2006, Evolution; international journal of organic evolution.

[52]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[53]  D. Vázquez,et al.  The Latitudinal Gradient in Niche Breadth: Concepts and Evidence , 2004, The American Naturalist.

[54]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[55]  R. Huey,et al.  Plants Versus Animals: Do They Deal with Stress in Different Ways?1 , 2002, Integrative and comparative biology.

[56]  Kevin J. Gaston,et al.  Thermal tolerance, climatic variability and latitude , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[58]  C. Loehle Height growth rate tradeoffs determine northern and southern range limits for trees , 1998 .

[59]  M. Lynch,et al.  Environmental Tolerance , 1987, The American Naturalist.

[60]  D. Janzen Why Mountain Passes are Higher in the Tropics , 1967, The American Naturalist.

[61]  J. Barney,et al.  Climatic niche shifts are common in introduced plants , 2017, Nature Ecology & Evolution.

[62]  A. Bradshaw Some of the Evolutionary Consequences of Being a Plant , 1972 .

[63]  J. Crosby Plant Evolution , 1966, Nature.