Mining User Preferences, Page Content and Usage to Personalize Website Navigation

The growing availability of information on the Web has raised a challenging problem: can a Web-based information system tailor itself to different user requirements with the ultimate goal of personalizing and improving the users' experience in accessing the contents of a website? This paper proposes a new approach to website personalization based on the exploitation of user browsing interests together with content and usage similarities among Web pages. The outcome is the delivery of page recommendations which are strictly related to the navigational purposes of visitors and their actual location within the cyberspace of the website. Our approach has been used effectively for developing a non-invasive system which allows Web users to navigate through potentially interesting pages without having a basic knowledge of the website structure.

[1]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[2]  Geert Wets,et al.  A Framework for Self Adaptive Websites: Tactical versus Strategic Changes , 2000 .

[3]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[4]  Thorsten Joachims,et al.  Web Watcher: A Tour Guide for the World Wide Web , 1997, IJCAI.

[5]  R. Jarvis,et al.  ClusteringUsing a Similarity Measure Based on SharedNear Neighbors , 1973 .

[6]  Alfred Kobsa,et al.  Adaptable and adaptive information provision for all users, including disabled and elderly people , 1998, New Rev. Hypermedia Multim..

[7]  Marie-Francine Moens,et al.  Automatic Indexing and Abstracting of Document Texts , 2000, Computational Linguistics.

[8]  EtzioniOren,et al.  Towards adaptive Web sites , 1999 .

[9]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[10]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[11]  Pattie Maes,et al.  Footprints: history-rich tools for information foraging , 1999, CHI '99.

[12]  Philip K. Chan,et al.  A Non-Invasive Learning Approach to Building Web User Profiles , 1999 .

[13]  Kenneth J. Supowit,et al.  The Relative Neighborhood Graph, with an Application to Minimum Spanning Trees , 1983, JACM.

[14]  Oren Etzioni,et al.  Towards adaptive Web sites: Conceptual framework and case study , 1999, Artif. Intell..

[15]  Vladimir Kotlyar,et al.  Personalization of Supermarket Product Recommendations , 2004, Data Mining and Knowledge Discovery.

[16]  M. Narasimha Murty,et al.  A computationally efficient technique for data-clustering , 1980, Pattern Recognit..

[17]  Sergio A. Alvarez,et al.  Efficient Adaptive-Support Association Rule Mining for Recommender Systems , 2004, Data Mining and Knowledge Discovery.

[18]  John Riedl,et al.  Combining Collaborative Filtering with Personal Agents for Better Recommendations , 1999, AAAI/IAAI.

[19]  George Karypis,et al.  Evaluation of Item-Based Top-N Recommendation Algorithms , 2001, CIKM '01.

[20]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[21]  MAGDALINI EIRINAKI,et al.  Web mining for web personalization , 2003, TOIT.

[22]  Chaomei Chen,et al.  Mining the Web: Discovering knowledge from hypertext data , 2004, J. Assoc. Inf. Sci. Technol..

[23]  Jaideep Srivastava,et al.  Automatic personalization based on Web usage mining , 2000, CACM.

[24]  Bamshad Mobasher,et al.  Web Usage Mining and Personalization , 2004, The Practical Handbook of Internet Computing.

[25]  Ravi Kumar,et al.  Recommendation Systems , 2001 .

[26]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[27]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[28]  Henry Lieberman,et al.  Letizia: An Agent That Assists Web Browsing , 1995, IJCAI.

[29]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[30]  Bamshad Mobasher,et al.  A Hybrid Web Personalization Model Based on Site Connectivity , 2003 .

[31]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[32]  G. Krishna,et al.  Agglomerative clustering using the concept of mutual nearest neighbourhood , 1978, Pattern Recognit..

[33]  Yoav Shoham,et al.  Content-Based, Collaborative Recommendation. , 1997 .

[34]  Philip K. Chan,et al.  Constructing Web User Profiles: A non-invasive Learning Approach , 1999, WEBKDD.

[35]  Yongjian Fu,et al.  A Generalization-Based Approach to Clustering of Web Usage Sessions , 1999, WEBKDD.