A higher-than-predicted measurement of iron opacity at solar interior temperatures
暂无分享,去创建一个
G. Loisel | S. Hansen | G. Rochau | R. Mancini | T. Nagayama | J. Bailey | C. Blancard | G. Faussurier | J. Colgan | C. Fontes | D. Kilcrease | S. Nahar | A. Pradhan | C. Iglesias | J. Macfarlane | I. Golovkin | P. Cossé | F. Gilleron | C. Orban | J. Pain | M. Sherrill | B. Wilson | B. Wilson | T. Nagayama | James Colgan | Christopher J. Fontes | Stephanie B. Hansen | Carlos A. Iglesias | Joseph J. MacFarlane | Roberto Mancini | Chris Orban | Anil K. Pradhan | S. B. Hansen | C. A. Iglesias | J. J. MacFarlane | R. Mancini
[1] Sarbani Basu,et al. Understanding the Internal Chemical Composition and Physical Processes of the Solar Interior , 2015 .
[2] G. Loisel,et al. Parallax diagnostics of radiation source geometric dilution for iron opacity experiments. , 2014, The Review of scientific instruments.
[3] G. Loisel,et al. Control and diagnosis of temperature, density, and uniformity in x-ray heated iron/magnesium samples for opacity measurements , 2014, 1405.4012.
[4] G. Loisel,et al. ZAPP: The Z Astrophysical Plasma Properties Collaboration. , 2014 .
[5] H. L. Zhang,et al. Light element opacities from ATOMIC , 2013 .
[6] G. Loisel,et al. A methodology for calibrating wavelength dependent spectral resolution for crystal spectrometers. , 2012, The Review of scientific instruments.
[7] S. Hansen,et al. Investigation of iron opacity experiment plasma gradients with synthetic data analyses. , 2012, The Review of scientific instruments.
[8] C. Jeynes,et al. Accurate determination of quantity of material in thin films by Rutherford backscattering spectrometry. , 2012, Analytical chemistry.
[9] C. Blancard,et al. SOLAR MIXTURE OPACITY CALCULATIONS USING DETAILED CONFIGURATION AND LEVEL ACCOUNTING TREATMENTS , 2012 .
[10] Franck Gilleron,et al. A consistent approach for mixed detailed and statistical calculation of opacities in hot plasmas , 2011, 1105.2494.
[11] H. F. Astrophysics,et al. Highly excited core resonances in photoionization of Fe XVII: Implications for plasma opacities , 2011, 1104.2881.
[12] G. Rochau,et al. Design of dynamic Hohlraum opacity samples to increase measured sample density on Z. , 2010, The Review of scientific instruments.
[13] Bernd Freytag,et al. Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.
[14] J. Ferguson,et al. NEW SOLAR COMPOSITION: THE PROBLEM WITH SOLAR MODELS REVISITED , 2009, 0909.2668.
[15] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[16] G. Chandler,et al. Diagnosis of x-ray heated Mg/Fe opacity research plasmas. , 2008, The Review of scientific instruments.
[17] G. Rochau,et al. Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas , 2008 .
[18] J. Christensen-Dalsgaard,et al. The Sun as a fundamental calibrator of stellar evolution , 2008, Proceedings of the International Astronomical Union.
[19] David R. Soderblom,et al. The Ages of Stars , 2007, 1003.6074.
[20] H. M. Antia,et al. Helioseismology and Solar Abundances , 2007, 0711.4590.
[21] G. Rochau,et al. Iron-plasma transmission measurements at temperatures above 150 eV. , 2007, Physical review letters.
[22] S. Hansen,et al. Hybrid atomic models for spectroscopic plasma diagnostics , 2006 .
[23] J. Kilkenny,et al. Dynamic hohlraum radiation hydrodynamics , 2006 .
[24] P. R. Woodruff,et al. HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling , 2006 .
[25] M. Pinsonneault,et al. Comparison of Radiative Accelerations Obtained with Atomic Data from OP and OPAL , 2004, astro-ph/0411799.
[26] C. J. Zeippen,et al. Updated opacities from the Opacity Project , 2004, astro-ph/0410744.
[27] J. Ballot,et al. Surprising sun: a new step towards a complete picture? , 2004, Physical review letters.
[28] M. Pinsonneault,et al. How Accurately Can We Calculate the Depth of the Solar Convective Zone? , 2004, astro-ph/0403604.
[29] Davidson,et al. Absorption experiments on x-ray-heated mid-Z constrained samples. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[30] M. Seaton,et al. Opacities for stellar envelopes , 1994 .
[31] B. L. Henke,et al. X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .
[32] Rosen,et al. L-shell absorption spectrum of an open-M-shell germanium plasma: Comparison of experimental data with a detailed configuration-accounting calculation. , 1991, Physical review letters.
[33] Forrest J. Rogers,et al. Opacities for the solar radiative interior , 1991 .
[34] C. C. Smith,et al. Investigation of the opacity of hot, dense aluminum in the region of its K edge , 1988 .
[35] C. H. Dittmore,et al. Low-energy x-ray response of photographic films. II. Experimental characterization , 1984 .
[36] S. Lubow,et al. Standard Solar Models and the Uncertainties in Predicted Capture Rates of Solar Neutrinos , 1982 .
[37] R. D. Cowan,et al. The Theory of Atomic Structure and Spectra , 1981 .
[38] S. Rosseland. Note on the Absorption of Radiation within a Star , 1924 .
[39] A. Eddington,et al. The Internal Constitution of the Stars , 1920, Nature.
[40] C. Ming. Determination of the Photoabsorption Cross-Sections of Al and Fe Films in the Soft X-Ray Region Using Synchrotron Radiation , 2004 .
[41] N. D. Grande. L shell photoabsorption spectroscopy for solid metals: Ti, V, Cr, Fe, Ni, Cu , 1990 .