A higher-than-predicted measurement of iron opacity at solar interior temperatures

[1]  Sarbani Basu,et al.  Understanding the Internal Chemical Composition and Physical Processes of the Solar Interior , 2015 .

[2]  G. Loisel,et al.  Parallax diagnostics of radiation source geometric dilution for iron opacity experiments. , 2014, The Review of scientific instruments.

[3]  G. Loisel,et al.  Control and diagnosis of temperature, density, and uniformity in x-ray heated iron/magnesium samples for opacity measurements , 2014, 1405.4012.

[4]  G. Loisel,et al.  ZAPP: The Z Astrophysical Plasma Properties Collaboration. , 2014 .

[5]  H. L. Zhang,et al.  Light element opacities from ATOMIC , 2013 .

[6]  G. Loisel,et al.  A methodology for calibrating wavelength dependent spectral resolution for crystal spectrometers. , 2012, The Review of scientific instruments.

[7]  S. Hansen,et al.  Investigation of iron opacity experiment plasma gradients with synthetic data analyses. , 2012, The Review of scientific instruments.

[8]  C. Jeynes,et al.  Accurate determination of quantity of material in thin films by Rutherford backscattering spectrometry. , 2012, Analytical chemistry.

[9]  C. Blancard,et al.  SOLAR MIXTURE OPACITY CALCULATIONS USING DETAILED CONFIGURATION AND LEVEL ACCOUNTING TREATMENTS , 2012 .

[10]  Franck Gilleron,et al.  A consistent approach for mixed detailed and statistical calculation of opacities in hot plasmas , 2011, 1105.2494.

[11]  H. F. Astrophysics,et al.  Highly excited core resonances in photoionization of Fe XVII: Implications for plasma opacities , 2011, 1104.2881.

[12]  G. Rochau,et al.  Design of dynamic Hohlraum opacity samples to increase measured sample density on Z. , 2010, The Review of scientific instruments.

[13]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[14]  J. Ferguson,et al.  NEW SOLAR COMPOSITION: THE PROBLEM WITH SOLAR MODELS REVISITED , 2009, 0909.2668.

[15]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[16]  G. Chandler,et al.  Diagnosis of x-ray heated Mg/Fe opacity research plasmas. , 2008, The Review of scientific instruments.

[17]  G. Rochau,et al.  Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas , 2008 .

[18]  J. Christensen-Dalsgaard,et al.  The Sun as a fundamental calibrator of stellar evolution , 2008, Proceedings of the International Astronomical Union.

[19]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[20]  H. M. Antia,et al.  Helioseismology and Solar Abundances , 2007, 0711.4590.

[21]  G. Rochau,et al.  Iron-plasma transmission measurements at temperatures above 150 eV. , 2007, Physical review letters.

[22]  S. Hansen,et al.  Hybrid atomic models for spectroscopic plasma diagnostics , 2006 .

[23]  J. Kilkenny,et al.  Dynamic hohlraum radiation hydrodynamics , 2006 .

[24]  P. R. Woodruff,et al.  HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling , 2006 .

[25]  M. Pinsonneault,et al.  Comparison of Radiative Accelerations Obtained with Atomic Data from OP and OPAL , 2004, astro-ph/0411799.

[26]  C. J. Zeippen,et al.  Updated opacities from the Opacity Project , 2004, astro-ph/0410744.

[27]  J. Ballot,et al.  Surprising sun: a new step towards a complete picture? , 2004, Physical review letters.

[28]  M. Pinsonneault,et al.  How Accurately Can We Calculate the Depth of the Solar Convective Zone? , 2004, astro-ph/0403604.

[29]  Davidson,et al.  Absorption experiments on x-ray-heated mid-Z constrained samples. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  M. Seaton,et al.  Opacities for stellar envelopes , 1994 .

[31]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[32]  Rosen,et al.  L-shell absorption spectrum of an open-M-shell germanium plasma: Comparison of experimental data with a detailed configuration-accounting calculation. , 1991, Physical review letters.

[33]  Forrest J. Rogers,et al.  Opacities for the solar radiative interior , 1991 .

[34]  C. C. Smith,et al.  Investigation of the opacity of hot, dense aluminum in the region of its K edge , 1988 .

[35]  C. H. Dittmore,et al.  Low-energy x-ray response of photographic films. II. Experimental characterization , 1984 .

[36]  S. Lubow,et al.  Standard Solar Models and the Uncertainties in Predicted Capture Rates of Solar Neutrinos , 1982 .

[37]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[38]  S. Rosseland Note on the Absorption of Radiation within a Star , 1924 .

[39]  A. Eddington,et al.  The Internal Constitution of the Stars , 1920, Nature.

[40]  C. Ming Determination of the Photoabsorption Cross-Sections of Al and Fe Films in the Soft X-Ray Region Using Synchrotron Radiation , 2004 .

[41]  N. D. Grande L shell photoabsorption spectroscopy for solid metals: Ti, V, Cr, Fe, Ni, Cu , 1990 .