Hybrid Thomas-Fermi-Dirac method for calculating atomic interaction energies. II. Results and comparison with experimental data
暂无分享,去创建一个
[1] P. Wedepohl. Comparison of a simple two-parameter equation of state with the Murnaghan equation , 1972 .
[2] O. Goscinski,et al. Local Exchange Approximation and the Virial Theorem , 1969 .
[3] P. Wedepohl. A simple analytical form of the Thomas-Fermi screening function and of Firsov's atomic interaction potential , 1968 .
[4] H. Mao,et al. Pressure‐Induced Phase Transformation in NaCl , 1968 .
[5] G. Kennedy,et al. The pressures of some solid‐solid transitions , 1962 .
[6] G. Vineyard,et al. THE DYNAMICS OF RADIATION DAMAGE , 1960 .
[7] H. B. Huntington. Mobility of Interstitial Atoms in a Face-Centered Metal , 1953 .
[8] C. Zener. Ring diffusion in metals , 1950 .
[9] D. Hartree,et al. Self-consistent field, with exchange, for nitrogen and sodium , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[10] H. B. Huntington,et al. Mechanism for Self-Diffusion in Metallic Copper , 1942 .
[11] D. Hartree,et al. Self-consistent field with exchange for potassium and argon , 1938 .
[12] D. Hartree,et al. Self-Consistent Field, with Exchange, for Cu$^{+}$ , 1936 .
[13] D. Hartree,et al. Self-Consistent Field, with Exchange, for ClFormula , 1936 .
[14] H. Jensen. Über die Existenz negativer Ionen im Rahmen des statistischen Modells , 1936 .
[15] K. Fuchs. A quantum mechanical calculation of the elastic constants of monovalent metals , 1936 .