26.75 cm2 organic solar modules demonstrate a certified efficiency of 14.34%

1Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China 2Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China 3College of Engineering and Computer Science, Australian National University, Canberra 2600, Australia 4Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China 5Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China 6College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

[1]  Junliang Yang,et al.  A 4-Arm Small Molecule Acceptor with High Photovoltaic Performance. , 2022, Angewandte Chemie.

[2]  Lixiu Zhang,et al.  Star polymer donors , 2022, Journal of Semiconductors.

[3]  Jianqi Zhang,et al.  Banana‐shaped electron acceptors with an electron‐rich core fragment and 3D packing capability , 2022, Carbon Energy.

[4]  Liming Ding,et al.  Large-area organic solar cells , 2022, Journal of Semiconductors.

[5]  J. Nelson,et al.  Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology , 2022, Nature Materials.

[6]  Yaowen Li,et al.  Fluid Mechanics Inspired Sequential Blade‐Coating for High‐Performance Large‐Area Organic Solar Modules , 2022, Advanced Functional Materials.

[7]  Liming Ding,et al.  The origin and evolution of Y6 structure , 2022, Journal of Semiconductors.

[8]  Jianhui Hou,et al.  Tandem Organic Solar Cell with 20.2% Efficiency , 2021, Joule.

[9]  Y. Zou,et al.  Modulation of Vertical Component Distribution for Large‐Area Thick‐Film Organic Solar Cells , 2021, Solar RRL.

[10]  Liming Ding,et al.  Side chain engineering on D18 polymers yields 18.74% power conversion efficiency , 2021, Journal of Semiconductors.

[11]  Junliang Yang,et al.  Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition , 2021, Nano Research.

[12]  Liming Ding,et al.  18.69% PCE from organic solar cells , 2021, Journal of Semiconductors.

[13]  Wei Pan,et al.  Over 1 cm2 flexible organic solar cells , 2021 .

[14]  Juntao Wu,et al.  Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency , 2021 .

[15]  Shangfeng Yang,et al.  A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency , 2021 .

[16]  Keqing Huang,et al.  Efficient organic solar cells with the active layer fabricated from glovebox to ambient condition , 2020 .

[17]  C. Brabec,et al.  Organic photovoltaic modules with new world record efficiencies , 2020, Progress in Photovoltaics: Research and Applications.

[18]  Christopher C. S. Chan,et al.  Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells , 2020, Nature Communications.

[19]  Chang-Qi Ma,et al.  Fully doctor-bladed efficient organic solar cells processed under ambient condition , 2020 .

[20]  Yongfang Li,et al.  A Layer-by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency , 2020, Joule.

[21]  Shangfeng Yang,et al.  18% Efficiency organic solar cells. , 2020, Science bulletin.

[22]  Jacek Ulanski,et al.  Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core , 2019, Joule.

[23]  Daoben Zhu,et al.  An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells , 2015, Advanced materials.

[24]  前田 竜志,et al.  Organic solar cells , 2009 .