Saccharomyces cerevisiae.

[1]  T. Stearns,et al.  Hedgehog signaling and the primary cilium: implications for spatial and temporal constraints on signaling. , 2021, Development.

[2]  T. Stearns,et al.  Cilium axoneme internalization and degradation in chytrid fungi , 2020, Cytoskeleton.

[3]  T. Stearns,et al.  Growth disadvantage associated with centrosome amplification drives population-level centriole number homeostasis , 2020, Molecular biology of the cell.

[4]  T. Stearns,et al.  Centrioles are amplified in cycling progenitors of olfactory sensory neurons , 2020, PLoS biology.

[5]  T. Stearns,et al.  Transient Primary Cilia Mediate Robust Hedgehog Pathway-Dependent Cell Cycle Control , 2019, Current Biology.

[6]  T. Stearns,et al.  Primary cilium loss in mammalian cells occurs predominantly by whole-cilium shedding , 2019, PLoS biology.

[7]  T. Stearns,et al.  CRISPR/Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells , 2019, bioRxiv.

[8]  Russ B. Altman,et al.  Pocket similarity identifies selective estrogen receptor modulators as microtubule modulators at the taxane site , 2019, Nature Communications.

[9]  Lucien E. Weiss,et al.  Motional dynamics of single Patched1 molecules in cilia are controlled by Hedgehog and cholesterol , 2019, Proceedings of the National Academy of Sciences.

[10]  Lucien E. Weiss,et al.  Revealing Nanoscale Morphology of the Primary Cilium Using Super-Resolution Fluorescence Microscopy , 2018, bioRxiv.

[11]  Lucien E. Weiss,et al.  Quantifying Nanoscale Morphological Features of the Primary Cilium Membrane using Super-Resolution Fluorescence Microscopy , 2018 .

[12]  T. Stearns,et al.  Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells , 2017, bioRxiv.

[13]  M. Cyert,et al.  Using yeast to determine the functional consequences of mutations in the human p53 tumor suppressor gene: An introductory course‐based undergraduate research experience in molecular and cell biology , 2016, Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology.

[14]  T. Stearns,et al.  Sperm Centrosomes: Kiss Your Asterless Goodbye, for Fertility’s Sake , 2015, Current Biology.

[15]  T. Stearns,et al.  MDM1 is a microtubule-binding protein that negatively regulates centriole duplication , 2015, Molecular biology of the cell.

[16]  Yin Loon Lee,et al.  Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole–cilium interface and facilitates proper cilium formation and function , 2014, Molecular biology of the cell.

[17]  T. Stearns,et al.  Proteomic analysis of mammalian sperm cells identifies new components of the centrosome , 2014, Journal of Cell Science.

[18]  Wan-Jen Hong,et al.  Centrosome-Kinase Fusions Promote Oncogenic Signaling and Disrupt Centrosome Function in Myeloproliferative Neoplasms , 2014, PloS one.

[19]  T. Stearns,et al.  FOP Is a Centriolar Satellite Protein Involved in Ciliogenesis , 2013, PloS one.

[20]  T. Stearns,et al.  The Rilp-like proteins Rilpl1 and Rilpl2 regulate ciliary membrane content , 2013, Molecular biology of the cell.

[21]  T. Stearns,et al.  The centriolar satellite proteins Cep72 and Cep290 interact and are required for recruitment of BBS proteins to the cilium , 2012, Molecular biology of the cell.

[22]  Erich A. Nigg,et al.  The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries , 2011, Nature Cell Biology.

[23]  S. Jaspersen,et al.  Exploring the pole: an EMBO conference on centrosomes and spindle pole bodies , 2008, Nature Cell Biology.

[24]  T. Stearns,et al.  Centrosome number is controlled by a centrosome-intrinsic block to reduplication , 2003, Nature Cell Biology.

[25]  D. Botstein,et al.  Systematic structure-function analysis of the small GTPase Arf1 in yeast. , 2002, Molecular biology of the cell.

[26]  T. Stearns,et al.  Centrosome Duplication A Centriolar Pas de Deux , 2001, Cell.

[27]  J. Demeter,et al.  The DNA damage checkpoint signal in budding yeast is nuclear limited. , 2000, Molecular cell.

[28]  L Wodicka,et al.  Parallel analysis of genetic selections using whole genome oligonucleotide arrays. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  T. Stearns,et al.  Nucleation and capture of large cell surface‐associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells , 1998, Journal of anatomy.

[30]  T. Stearns Motoring to the Finish: Kinesin and Dynein Work Together to Orient the Yeast Mitotic Spindle , 1997, The Journal of cell biology.

[31]  Nicholas J. Cowan,et al.  Tubulin Subunits Exist in an Activated Conformational State Generated and Maintained by Protein Cofactors , 1997, The Journal of cell biology.

[32]  Tim Stearns,et al.  Microtubules Orient the Mitotic Spindle in Yeast through Dynein-dependent Interactions with the Cell Cortex , 1997, The Journal of cell biology.

[33]  T. Stearns,et al.  Assaying Cell Cycle Progression via Flow Cytometry in CRISPR/Cas9-Treated Cells. , 2021, Methods in molecular biology.

[34]  T. Stearns,et al.  The ABCs of Centriole Architecture: The Form and Function of Triplet Microtubules , 2018, Cold Spring Harbor symposia on quantitative biology.

[35]  B. Clarke,et al.  Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism , 2008 .

[36]  D. Agard,et al.  Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. , 2005, Nature.

[37]  T. Stearns,et al.  Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure , 2004, BMC Cell Biology.

[38]  T. Stearns,et al.  Centrosomal deployment of gamma-tubulin and pericentrin: evidence for a microtubule-nucleating domain and a minus-end docking domain in certain mouse epithelial cells. , 1997, Cell motility and the cytoskeleton.