An adaptive neural network prediction for nonlinear parabolic distributed parameter system based on block-wise moving window technique

This paper proposes an efficient adaptive artificial neural network (ANN) model for nonlinear parabolic distributed parameter systems (DPSs) with changes in operating condition. To obtain the complex spatiotemporal dynamics of DPS, the ANN model is updated via applying block-wise recursive formula. The improved group search optimization (IGSO) approach is proposed to optimize the connection weights and thresholds of the ANN to solve the problem of falling into the local optima. Meanwhile, when the number of the new data does not reach the threshold of the block-wise, the ANN does not need to update. And, the predictive output consists of the ANN model predictive output and the compensated output obtained from the real time predictive errors by recursive least squares method. The proposed method can effectively capture the slowly changing of process dynamics and decrease the computational cost. Simulations are presented to demonstrate the accuracy and effectiveness of the proposed methods.

[1]  P. Christofides,et al.  Finite-dimensional approximation and control of non-linear parabolic PDE systems , 2000 .

[2]  Chenkun Qi,et al.  Nonlinear dimension reduction based neural modeling for distributed parameter processes , 2009 .

[3]  In-Beum Lee,et al.  Adaptive multivariate statistical process control for monitoring time-varying processes , 2006 .

[4]  E. Cantu-Paz,et al.  An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  Ruth F. Curtain,et al.  Survey paper: Transfer functions of distributed parameter systems: A tutorial , 2009 .

[6]  Huijun Gao,et al.  A Constrained Evolutionary Computation Method for Detecting Controlling Regions of Cortical Networks , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[7]  Chenkun Qi,et al.  A multi-channel spatio-temporal Hammerstein modeling approach for nonlinear distributed parameter processes , 2009 .

[8]  Karlene A. Hoo,et al.  System identification and model-based control for distributed parameter systems , 2004, Comput. Chem. Eng..

[9]  Panagiotis D. Christofides,et al.  Output feedback control of parabolic PDE systems with nonlinear spatial differential operators , 1999 .

[10]  Zidong Wang,et al.  $H_{\infty}$ State Estimation for Discrete-Time Complex Networks With Randomly Occurring Sensor Saturations and Randomly Varying Sensor Delays , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[11]  Mengling Wang,et al.  Spatiotemporal prediction for nonlinear parabolic distributed parameter system using an artificial neural network trained by group search optimization , 2013, Neurocomputing.

[12]  Panagiotis D. Christofides,et al.  Predictive control of parabolic PDEs with boundary control actuation , 2006 .

[13]  Stephen A. Billings,et al.  State-Space Reconstruction and Spatio-Temporal Prediction of Lattice Dynamical Systems , 2007, IEEE Transactions on Automatic Control.

[14]  P. Christofides,et al.  Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes , 2002 .

[15]  P. Christofides,et al.  Dynamic optimization of dissipative PDE systems using nonlinear order reduction , 2002 .

[16]  Yang Tang,et al.  Controller design for synchronization of an array of delayed neural networks using a controllable probabilistic PSO , 2011, Inf. Sci..

[17]  Efrén Aguilar-Garnica,et al.  A robust monitoring tool for distributed parameter plug flow reactors , 2011, Comput. Chem. Eng..

[18]  Kapil Varshney,et al.  Artificial neural network control of a heat exchanger in a closed flow air circuit , 2005, Appl. Soft Comput..

[19]  Julio R. Banga,et al.  Robust Feed-back Control of Distributed Chemical Reaction Systems , 2007 .

[20]  Wu-Chung Su,et al.  Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties , 2011, Autom..

[21]  Panagiotis D. Christofides,et al.  Predictive control of transport-reaction processes , 2005, Comput. Chem. Eng..

[22]  Mohammad Farrokhi,et al.  Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based moving window technique , 2012 .

[23]  Huijun Gao,et al.  Evolutionary Pinning Control and Its Application in UAV Coordination , 2012, IEEE Transactions on Industrial Informatics.

[24]  Ferenc Szeifert,et al.  Nonlinear inversion-based control of a distributed parameter heating system , 2012 .

[25]  Haralambos Sarimveis,et al.  Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models , 2008, Comput. Chem. Eng..

[26]  Hong-Nan Li,et al.  System identification of dynamic structure by the multi-branch BPNN , 2007, Neurocomputing.