Blow-up of sign-changing solutions of a quasilinear heat equation

[1]  T. Cazenave,et al.  Global existence and blowup for sign-changing solutions of the nonlinear heat equation , 2009 .

[2]  Stathis Filippas,et al.  Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  J. Serrin,et al.  Local asymptotic stability for dissipative wave systems , 1998 .

[4]  J. Serrin,et al.  Global Nonexistence for Abstract Evolution Equations with Positive Initial Energy , 1998 .

[5]  N. Mizoguchi,et al.  Blowup and life span of solutions for a semilinear parabolic equation , 1998 .

[6]  Kosuke Ono,et al.  GLOBAL EXISTENCE, DECAY, AND BLOWUP OF SOLUTIONS FOR SOME MILDLY DEGENERATE NONLINEAR KIRCHHOFF STRINGS , 1997 .

[7]  Howard A. Levine,et al.  Global Nonexistence Theorems for Quasilinear Evolution Equations with Dissipation , 1997 .

[8]  J. Serrin,et al.  Asymptotic stability for nonautonomous dissipative wave systems , 1996 .

[9]  H. Levine Instability and Nonexistence of Global Solutions to Nonlinear Wave Equations , 1974 .

[10]  Howard A. Levine,et al.  Some Additional Remarks on the Nonexistence of Global Solutions to Nonlinear Wave Equations , 1974 .

[11]  J. Serrin,et al.  Some remarks on the global nonexistence problem for nonautonomous abstract evolution equations , 1997 .

[12]  Howard A. Levine,et al.  A potential well theory for the wave equation with a nonlinear boundary condition. , 1987 .

[13]  Howard A. Levine,et al.  Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=−Au+ℱ(u) , 1973 .