Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles Using Optical Nanofibers: A Review

The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications.

[1]  Wonho Jhe,et al.  Cavity quantum electrodynamics for a cylinder: Inside a hollow dielectric and near a solid dielectric cylinder , 1997 .

[2]  Thomas Søndergaard,et al.  General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier , 2001 .

[3]  M. Scully,et al.  Advances in Atomic, Molecular, and Optical Physics , 2022, Advances In Atomic, Molecular, and Optical Physics.

[4]  F. Kien,et al.  Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber. , 2012, Physical review letters.

[5]  Andreas Stintz,et al.  Single quantum dot spectroscopy using a fiber taper waveguide near-field optic , 2007 .

[6]  K. Hakuta,et al.  Single atoms on an optical nanofibre , 2007, 0709.2749.

[7]  V. I. Balykin,et al.  Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber , 2004 .

[8]  Seok Ho Song,et al.  Surface-plasmon coupling in subwavelength periodic structures , 2005, SPIE/COS Photonics Asia.

[9]  Hong-Quan Zhao,et al.  Highly efficient coupling of photons from nanoemitters into single-mode optical fibers. , 2011, Nano letters.

[10]  D Meschede,et al.  Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions. , 2007, Physical review letters.

[11]  Jakob Reichel,et al.  Microchip traps and Bose–Einstein condensation , 2002 .

[12]  R. Scholten,et al.  Diffraction-contrast imaging of cold atoms , 2005, physics/0501057.

[13]  Kohzo Hakuta,et al.  Intracavity electromagnetically induced transparency in atoms around a nanofiber with a pair of Bragg grating mirrors , 2009 .

[14]  Lei Shi,et al.  Nanohole induced microfiber Bragg gratings. , 2012, Optics express.

[15]  Síle Nic Chormaic,et al.  Magnetic guide for neutral atoms , 2002 .

[16]  D Meschede,et al.  Switching photochromic molecules adsorbed on optical microfibres. , 2012, Optics express.

[17]  Jonathan M. Ward,et al.  Fano Resonances and Electromagnetically Induced Absorption and Transparency-like Effects in Single Silica Microspheres , 2010 .

[18]  Hartmut Bartelt,et al.  High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers , 2011 .

[19]  Hong-Quan Zhao,et al.  A nanodiamond-tapered fiber system with high single-mode coupling efficiency. , 2012, Optics express.

[20]  A. Rauschenbeutel,et al.  Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber. , 2009, Optics express.

[21]  Lan Yang,et al.  Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices , 2012 .

[22]  Th. Busch,et al.  Creating atom-number states around tapered optical fibers by loading from an optical lattice , 2012 .

[23]  Harith Ahmad,et al.  Thermally tunable microfiber knot resonator based erbium-doped fiber laser , 2012 .

[24]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[25]  Yongmin Jung,et al.  Optical fiber microwires and nanowires manufactured by modified flame brushing technique: properties and applications , 2010 .

[26]  V. G. Truong,et al.  Higher order mode propagation in an optical nanofiber , 2012 .

[27]  Amy Watkins,et al.  Few Atom Detection and Manipulation Using Optical Nanofibres , 2009, QuantumComm.

[28]  Guy Beadie,et al.  Higher order mode propagation in ultrathin optical fibers for atom traps , 2013, Photonics West - Optoelectronic Materials and Devices.

[29]  D. Grobnic,et al.  Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation , 2006, IEEE Photonics Technology Letters.

[30]  Richard J. Black,et al.  Tapered single-mode fibres and devices. I. Adiabaticity criteria , 1991 .

[31]  Jonathan Ward,et al.  Thermo-Optical Tuning of Whispering Gallery Modes in Erbium:Ytterbium Doped Glass Microspheres to Arbitrary Probe Wavelengths , 2012 .

[32]  Síle Nic Chormaic,et al.  Optical bistability in Er-Yb codoped phosphate glass microspheres at room temperature , 2007, physics/0702139.

[33]  Tomoyuki Yoshie,et al.  Optical Microcavity: Sensing down to Single Molecules and Atoms , 2011, Sensors.

[34]  M. Sumetsky,et al.  Optical microfiber loop resonator , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[35]  T G Walker,et al.  Nondestructive spatial heterodyne imaging of cold atoms. , 2001, Optics letters.

[36]  Limin Tong,et al.  Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. , 2004, Optics express.

[37]  Kohzo Hakuta,et al.  Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber , 2009 .

[38]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[39]  K. Vahala,et al.  Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. , 2003, Physical review letters.

[40]  Igor Protsenko,et al.  Sub-poissonian loading of single atoms in a microscopic dipole trap , 2001, Nature.

[41]  Ming Ding,et al.  A Microfiber Cavity with Minimal-Volume Confinement , 2011 .

[42]  Kohzo Hakuta,et al.  Translational motion of an atom in a weakly driven fiber-Bragg-grating cavity , 2012 .

[43]  Timothy A. Birks,et al.  Control of optical fibre taper shape , 1991 .

[44]  M. Ding,et al.  An Optical Fiber Tip Micrograting Thermometer , 2011, IEEE Photonics Journal.

[45]  H. Kimble,et al.  Demonstration of a state-insensitive, compensated nanofiber trap. , 2012, Physical review letters.

[46]  Byoungho Lee,et al.  Review of the present status of optical fiber sensors , 2003 .

[47]  Kartik Srinivasan,et al.  Hybrid gap modes induced by fiber taper waveguides: application in spectroscopy of single solid-state emitters deposited on thin films. , 2010, Optics express.

[48]  H. J. Kimble,et al.  Strong interactions of single atoms and photons near a dielectric boundary , 2010, 1011.0740.

[49]  V. Minogin,et al.  Pumping of higher-order modes of an optical nanofiber by laser excited atoms , 2013 .

[50]  K. Hakuta,et al.  Cavity-enhanced channeling of emission from an atom into a nanofiber , 2009, 0910.5276.

[51]  Laura Russell,et al.  Spectral distribution of atomic fluorescence coupled into an optical nanofibre , 2009 .

[52]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[53]  P. Zoller,et al.  A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators , 2006 .

[54]  Limin Tong,et al.  Modeling of silica nanowires for optical sensing. , 2005, Optics express.

[55]  S. Dawkins,et al.  A nanofiber-based optical conveyor belt for cold atoms , 2012, 1207.3021.

[56]  Gilberto Brambilla,et al.  Ultra-low-loss optical fiber nanotapers. , 2004, Optics express.

[57]  Nan Wu,et al.  Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules , 2011, Sensors.

[58]  Kohzo Hakuta,et al.  Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes , 2005 .

[59]  Oskar Painter,et al.  Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures , 2007 .

[60]  Limin Tong,et al.  Optical microfibers and nanofibers: A tutorial , 2012 .

[61]  Lu Ding,et al.  Ultralow loss single-mode silica tapers manufactured by a microheater , 2010 .

[62]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[63]  Limin Xiao,et al.  High finesse microfiber knot resonators made from double-ended tapered fibers. , 2011, Optics letters.

[64]  K. Hakuta,et al.  Spontaneous radiative decay of translational levels of an atom near a dielectric surface , 2007 .

[65]  V. I. Balykin,et al.  Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber , 2004 .

[66]  Richard J. Black,et al.  Tapered single-mode fibres and devices. II. Experimental and theoretical quantification , 1991 .

[67]  Limin Tong,et al.  Subwavelength-diameter silica wires for low-loss optical wave guiding , 2003, Nature.

[68]  J. Knight,et al.  Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. , 1997, Optics letters.

[69]  S. W. Harun,et al.  Electrically Tunable Microfiber Knot Resonator Based Erbium-Doped Fiber Laser , 2012, IEEE Journal of Quantum Electronics.

[70]  Dieter Meschede,et al.  Deterministic Delivery of a Single Atom , 2001, Science.

[71]  Saikat Ghosh,et al.  Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber. , 2006, Physical review letters.

[72]  Dallin S. Durfee,et al.  Propagation of Sound in a Bose-Einstein Condensate , 1997 .

[73]  D.J. DiGiovanni,et al.  The microfiber loop resonator: theory, experiment, and application , 2006, Journal of Lightwave Technology.

[74]  Keith A. Nugent,et al.  Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors , 1999 .

[75]  N. S. Barnett,et al.  Private communication , 1969 .

[76]  R. Yalla,et al.  Fluorescence photon measurements from single quantum dots on an optical nanofiber. , 2011, Optics express.

[77]  T. Birks,et al.  Shape of fiber tapers , 1992 .

[78]  E. A. Cornell,et al.  Measurement of the Casimir-Polder force through center-of-mass oscillations of a Bose-Einstein condensate , 2005 .

[79]  Oliver Benson,et al.  Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber. , 2009, Optics express.

[80]  Jianhui Yu,et al.  Optically tunable microfiber-knot resonator. , 2011, Optics express.

[81]  Mark Baker,et al.  Ultra-sensitive atom imaging for matter-wave optics , 2011 .

[82]  D. Pritchard,et al.  Transport of Bose-Einstein condensates with optical tweezers. , 2001, Physical review letters.

[83]  M. Takiguchi,et al.  Saturated absorption spectroscopy of acetylene molecules with an optical nanofiber. , 2011, Optics letters.

[84]  G S Pati,et al.  Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. , 2008, Physical review letters.

[85]  Fei Xu,et al.  Manufacture of 3-D Microfiber Coil Resonators , 2007, IEEE Photonics Technology Letters.

[86]  P. Kryukov,et al.  Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation. , 2003, Optics letters.

[87]  Kohzo Hakuta Single atoms on an optical nanofiber: a novel work system for slow light , 2008, SPIE OPTO.

[88]  Yongmin Jung,et al.  Polarization-maintaining optical microfiber. , 2010, Optics letters.

[89]  Wolf von Klitzing,et al.  A gradient and offset compensated Ioffe–Pritchard trap for Bose–Einstein condensation experiments , 2012 .

[90]  Limin Tong,et al.  Brief introduction to optical microfibers and nanofibers , 2010 .

[91]  Mark Daly,et al.  1- and 2-photon absorption by laser-cooled 85Rb using an optical nanofiber , 2012 .

[92]  Bai-Ou Guan,et al.  High-efficiency ultraviolet inscription of Bragg gratings in microfibers , 2012, IEEE Photonics Journal.

[93]  Manoj Das,et al.  Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber. , 2010, Optics express.

[94]  K Nakajima,et al.  Cavity formation on an optical nanofiber using focused ion beam milling technique. , 2011, Optics express.

[95]  Theodor W. Hänsch,et al.  ATOMIC MICROMANIPULATION WITH MAGNETIC SURFACE TRAPS , 1999 .

[96]  Phillips,et al.  First observation of magnetically trapped neutral atoms. , 1985, Physical review letters.

[97]  Immanuel Bloch,et al.  Tonks–Girardeau gas of ultracold atoms in an optical lattice , 2004, Nature.

[98]  Cai,et al.  Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.

[99]  Jonathan M. Ward,et al.  Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4–BaF2–NaF–AlF3) microspheres , 2010 .

[100]  S. D. Gupta,et al.  Optical excitation spectrum of an atom in a surface-induced potential , 2006, quant-ph/0610067.

[101]  D. Meschede,et al.  Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers. , 2007, Optics express.

[102]  Kohzo Hakuta,et al.  Triggered generation of single guided photons from a single atom in a nanofiber cavity , 2011 .

[103]  Joerg Schmiedmayer,et al.  GUIDING NEUTRAL ATOMS WITH A WIRE , 1999 .

[104]  S. Dawkins,et al.  Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. , 2009, Physical review letters.

[105]  F. Kien,et al.  Scattering of an evanescent light field by a single cesium atom near a nanofiber (11 pages) , 2006 .

[106]  Courtois,et al.  Measurement of the van der Waals Force in an Atomic Mirror. , 1996, Physical review letters.

[107]  Ming Ding,et al.  A compact broadband microfiber Bragg grating. , 2011, Optics express.

[108]  A Rauschenbeutel,et al.  Dispersive optical interface based on nanofiber-trapped atoms. , 2011, Physical review letters.

[109]  D. Meschede,et al.  Optical nanofibers and spectroscopy , 2011, 1105.2155.

[110]  Kartik Srinivasan,et al.  Fiber-coupled semiconductor waveguides as an efficient optical interface to a single quantum dipole. , 2009, Optics letters.

[111]  M. Rothhardt,et al.  Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics. , 2012, Optics letters.

[112]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[113]  Síle Nic Chormaic,et al.  Short vertical tube furnace for the fabrication of doped glass microsphere lasers. , 2010, The Review of scientific instruments.

[114]  Síle Nic Chormaic,et al.  Optical elements for slowly moving neutral atoms based on magnetic fields , 1999 .

[115]  Lei Shi,et al.  Fabrication of submicron-diameter silica fibers using electric strip heater. , 2006, Optics express.

[116]  K. Hakuta,et al.  Nanofibers with Bragg gratings from equidistant holes , 2011, 1103.1789.

[117]  V. Vuletic,et al.  Vacuum-Induced Transparency , 2011, Science.

[118]  Síle Nic Chormaic,et al.  The van der Waals interaction of an atom with the convex surface of a nanocylinder* , 2012 .

[119]  T B Pittman,et al.  Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor. , 2010, Physical review letters.

[120]  A. Rauschenbeutel,et al.  Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres , 2008, 0806.3909.

[121]  V. I. Balykin,et al.  Atom trapping and guiding with a subwavelength-diameter optical fiber , 2004 .

[122]  B. Shortt,et al.  Heat-and-pull rig for fiber taper fabrication , 2006, physics/0604049.

[123]  Síle Nic Chormaic,et al.  TAPERED FEW-MODE FIBERS: MODE EVOLUTION DURING FABRICATION AND ADIABATICITY , 2011 .

[124]  J. D. Franson,et al.  Quantum computing using single photons and the Zeno effect , 2004 .

[125]  Jonathan M. Ward,et al.  Observation of Zeeman shift in the rubidium D2 line using an optical nanofiber in vapor , 2013, Iberoamerican Meeting of Optics and the Latin American Meeting of Optics, Lasers and Their Applications.

[126]  Chu,et al.  Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. , 1985, Physical review letters.

[127]  Síle Nic Chormaic,et al.  Manifestation of the van der Waals surface interaction in the spontaneous emission of atoms into an optical nanofiber , 2010 .

[128]  Yu Zhang,et al.  Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating. , 2010, Optics express.

[129]  Laura Russell,et al.  Measurements on release–recapture of cold 85Rb atoms using an optical nanofibre in a magneto-optical trap , 2013 .

[130]  Chu,et al.  Trapping of neutral sodium atoms with radiation pressure. , 1987, Physical review letters.

[131]  Yang Guo-guang,et al.  A tunable all-fiber filter based on microfiber loop resonator , 2008 .

[132]  Kohzo Hakuta,et al.  Light-induced force and torque on an atom outside a nanofiber , 2006 .

[133]  Fei Xu,et al.  Optimized Design of Microcoil Resonators , 2007, Journal of Lightwave Technology.

[134]  K. Vahala,et al.  Observation of strong coupling between one atom and a monolithic microresonator , 2006, Nature.

[135]  A. Boudrioua Optical Waveguide Theory , 2010 .

[136]  Jacques Bures,et al.  Power density of the evanescent field in the vicinity of a tapered fiber , 1999 .

[137]  K. Vahala Optical microcavities , 2003, Nature.

[138]  K. Hakuta,et al.  Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique. , 2012, Optics express.

[139]  V. V. Klimov,et al.  Spontaneous emission of an excited atom placed near a “left-handed” sphere , 2002 .

[140]  Manoj Das,et al.  Spectroscopy of near-surface atoms using an optical nanofiber , 2012 .

[141]  G. I. Opat,et al.  A magnetic guide for cold atoms , 1998 .

[142]  J. D. Franson,et al.  Nonlinear transmission through a tapered fiber in rubidium vapor , 2009 .

[143]  V.V.Klimov,et al.  Spontaneous emission rate of an excited atom placed near a nanofiber , 2002, physics/0206048.

[144]  R. Kumar,et al.  Measurements on release-recapture of cold Rb-85 atoms using an optical nanofibre in a magneto-optical trap , 2013, 1303.7344.

[145]  Meimei Lai,et al.  Transmission degradation and preservation for tapered optical fibers in rubidium vapor. , 2013, Applied optics.

[146]  Jonathan Ward,et al.  Single-input spherical microbubble resonator. , 2011, Optics letters.

[147]  Laura Russell,et al.  Sub-Doppler temperature measurements of laser-cooled atoms using optical nanofibres , 2011 .

[148]  Kartik Srinivasan,et al.  Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides. , 2009, Optics express.

[149]  Limin Tong,et al.  Compact microfiber Bragg gratings with high-index contrast. , 2011, Optics letters.

[150]  Síle Nic Chormaic,et al.  Tapered optical fibers as tools for probing magneto-optical trap characteristics. , 2009, The Review of scientific instruments.

[151]  T. Hänsch,et al.  Bose-Einstein condensation in a quadrupole-Ioffe-configuration trap , 1998 .

[152]  Jonathan M. Ward,et al.  Single input Spherical Microbubble Resonator , 2011 .

[153]  T A Birks,et al.  Miniature all-fiber devices based on CO(2) laser microstructuring of tapered fibers. , 2001, Optics letters.

[154]  S. Hughes,et al.  Modified spontaneous emission and qubit entanglement from dipole-coupled quantum dots in a photonic crystal nanocavity. , 2005 .

[155]  A. Rauschenbeutel,et al.  Nanofiber-based double-helix dipole trap for cold neutral atoms , 2012, 1203.0499.

[156]  M. Sumetsky,et al.  Optical fiber microcoil resonators. , 2004, Optics express.

[157]  Florian Warken,et al.  Ultra-high-Q tunable whispering-gallery-mode microresonator , 2009 .

[158]  Limin Tong,et al.  Demonstration of microfiber knot laser , 2006 .

[159]  Kohzo Hakuta,et al.  Deterministic generation of a pair of entangled guided photons from a single atom in a nanofiber cavity , 2011 .

[160]  V. Letokhov Nonlinear high resolution laser spectroscopy , 1975, Science.

[161]  Hartmut Bartelt,et al.  Thermal regeneration of fiber Bragg gratings in photosensitive fibers. , 2009, Optics express.

[162]  Xueliang Zhang,et al.  Temperature compensation techniques for resonantly enhanced sensors and devices based on optical microcoil resonators , 2012 .

[163]  Fam Le Kien,et al.  Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence. , 2007, Optics express.