Comparative flow visualization

There are many situations where one needs to compare two or more data sets. It may be to compare different models, different resolutions, differences in algorithms, different experimental results, etc. There is therefore a need for comparative visualization tools to help analyze the differences. This paper focuses on comparative visualization tools for analyzing flow or vector data sets. The techniques presented allow one to compare individual streamlines and stream ribbons as well as a dense field of streamlines. These comparison methods can also be used to study differences in vortex cores that are represented as polylines.

[1]  P. Buning,et al.  Simulation of blunt-fin-induced shock wave and turbulent boundary-layer interaction , 1984 .

[2]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[3]  H. K. Moffatt,et al.  On a class of steady confined Stokes flows with chaotic streamlines , 1990, Journal of Fluid Mechanics.

[4]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[5]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[6]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[7]  Pat Hanrahan,et al.  Hierarchical splatting: a progressive refinement algorithm for volume rendering , 1991, SIGGRAPH.

[8]  Jane Wilhelms,et al.  A coherent projection approach for direct volume rendering , 1991, SIGGRAPH.

[9]  Pat Hanrahan,et al.  Fast algorithms for volume ray tracing , 1992, VVS.

[10]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[11]  Hans-Georg Pagendarm,et al.  Studies in Comparative Visualization of Flow Features , 1994, Scientific Visualization.

[12]  David C. Banks,et al.  Vortex tubes in turbulent flows: identification, representation, reconstruction , 1994, Proceedings Visualization '94.

[13]  J. Dacles-Mariani,et al.  Numerical/experimental study of a wingtip vortex in the near field , 1995 .

[14]  Theo van Walsum,et al.  Iconic techniques for feature visualization , 1995, Proceedings Visualization '95.

[15]  Alex T. Pang,et al.  UFLOW: visualizing uncertainty in fluid flow , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[16]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[17]  Kwan-Liu Ma,et al.  3D shock wave visualization on unstructured grids , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[18]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[19]  Xin Wang,et al.  Volume tracking , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[20]  Hans-Georg Pagendarm,et al.  Data level comparative visualization in aircraft design , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[21]  Alex T. Pang,et al.  Cutting planes and beyond , 1997, Comput. Graph..

[22]  Peter Williams,et al.  Foundations for Measuring Volume Rendering Quality , 1997 .

[23]  Dinesh Manocha,et al.  Visibility culling using hierarchical occlusion maps , 1997, SIGGRAPH.

[24]  Xin Wang,et al.  Tracking and Visualizing Turbulent 3D Features , 1997, IEEE Trans. Vis. Comput. Graph..

[25]  Alex T. Pang,et al.  Ray-Based Data Level Comparisons of Direct Volume Rendering Algorithms , 1997, Scientific Visualization Conference (dagstuhl '97).

[26]  Samuel P. Uselton exVis: developing a wind tunnel data visualization tool , 1997 .

[27]  Alex Pang,et al.  Data level comparison of wind tunnel and computational fluid dynamics data , 1998 .

[28]  L. Hesselink,et al.  Feature comparisons of vector fields using Earth mover's distance , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[29]  Alexandru Telea,et al.  Simplified representation of vector fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[30]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[31]  Vivek Verma,et al.  Volume decimation of irregular tetrahedral grids , 1999, 1999 Proceedings Computer Graphics International.

[32]  Bernd Hamann,et al.  Construction of vector field hierarchies , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[33]  Raghu Machiraju,et al.  Structured spatial domain image and data comparison metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[34]  Alex Pang,et al.  A Methodology for Comparing Direct Volume Rendering Algorithms Using a Projection-Based Data Level Approach , 1999, VisSym.

[35]  Suresh K. Lodha,et al.  Topology preserving compression of 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[36]  Kwan-Liu Ma,et al.  Multiresolution view-dependent splat based volume rendering of large irregular data , 2001, Proceedings IEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics (Cat. No.01EX520).

[37]  Alex T. Pang,et al.  Extended Specifications and Test Data Sets for Data Level Comparisons of Direct Volume Rendering Algorithms , 2001, IEEE Trans. Vis. Comput. Graph..